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1 Functions of Bounded Variation and Distribution Func-
tions

1.1 Functions of bounded variation

First, let’s review the idea of functions of bounded variation.

Definition 1.1. Let −∞ < a < b < ∞. We say that f : [a, b] → R is of bounded
variation and write f ∈ BV([a, b]) if

sup
n

sup
xi

{
n−1∑
i=1

|f(xi)− f(xi−1)| : a = x0 < x1 < · · · < xn = b

}
<∞

We call this supremum the total variation norm and write it as ‖f‖TV([a,b]).

If f : [a, b]→ R, we write f ′ = f ′abs + f ′sing, where
∫
|f ′abs|+

∫
|f ′sing| <∞.

Definition 1.2. We sat that F : R→ C is of bounded variation if

sup
x0,x1

{
‖F‖TV([x0,x1]) : −∞ < x0 < x1 <∞

}
<∞.

Set TF (x) = supx0<x ‖F‖TV([x0,x]). This is a monotone increasing function. Observe
that F ∈ BV(R) means that limx→∞ TF (x) <∞.

We can normalize functions of bounded variation.

Definition 1.3. NBV(R) is the set of F ∈ BV(R) such that

1. F is right continuous.

2. limx→−∞ F (x) = 0.

Definition 1.4. If ν1, ν2 are two signed Borel measures on R of finite total mass, ν =
ν1 + iν2 is called a complex Borel measure.

Remark 1.1. Signed measures can take the values ±∞, but we require them to be finite
here.

Proposition 1.1. If F ∈ NBV(R), then there exists a unique Borel complex measure µF
on R such that F (x) = µF ((−∞, x]). Conversely, every Borel complex measure is of the
form µF .

Theorem 1.1 (integration by parts). Let F,G ∈ BV([a, b]), where −∞ < a < b < ∞.
Assume F is right continuous and G is continuous. Then∫

(a,b]
F (x) dµG(x) +

∫
(a,b]

G(x) dµF (x) = F (b)G(b)− F (a)G(a).

Remark 1.2. One uses the notation∫
(a,b]

F (x)µG(x) =

∫
(a,b]

F (x) dG(x).
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1.2 Distribution functions

Throughout this section, (X,M, µ) is a measure space, and 0 < p <∞.

Definition 1.5.

Lp(X,µ) =

{
F : X → C : F is measurable,

∫
X
|F |p dµ <∞

}
.

We write

‖F‖Lp =

(∫
X
|F (x)|p dµ(x)

)1/p

.

Remark 1.3. We will write Lp or Lp(µ) for Lp(X,µ).

Proposition 1.2 (Chebyshev’s inequality). Fix α > 0.∫
X
|F (x)|p dµ(x) ≥ αpµ({|F | > α}).

Proof.∫
X
|F (x)|p dµ(x) ≥

∫
{|F |>α}

|F (x)|p dµ(x) ≥
∫
{|F |≥α}

αp dµ(x) ≥ αpµ({|F | > α}).

Remark 1.4. If F ∈ Lp, then

sup
α>0

αpµ({|F | > α}) ≤ ‖F‖pLp <∞.

Definition 1.6. Let F : X → C be measurable. The distribution function of F is
λF : (0,∞)→ [0,∞] defined as λF (α) = µ({|F | > α}).

Proposition 1.3. Let F,G :→ C be measurable.

1. λF is monotone decreasing.

2. If |F | ≤ |G|, then λF ≤ λG.

3. If H := F +G, then λH(α) ≤ λF (α/2) + λG(α/2).

4. If Fn : X → C are measurable functions such that |Fn| ≤ |Fn+1| ≤ |F | for all n, and
limn |Fn| = |F |, then limn λFn = λF .

Proof. Define E(α, F ) = {|F | > α} for α > 0.

1. If 0 < α1 < α2, then E(α2, F ) ⊆ E(α1, F ). So

λF (α2) = µ(E(α2, F )) ≤ µ(E(α1, F )) = λF (α1).
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2. If |F | ≤ |G|, then for α > 0, E(α, F ) ⊆ E(α,G).

3. If |H| > α, then |F | + |G| ≥ |F + G| = |H| > α. Then |F | > α/2 or |G| > α/2. So
E(α,H) ⊆ E(α/2, F ) ∪ E(α/2, G). So

µ(E(α,H)) ≤ µ(E(α/2, F )) + µ(E(α/2, G)).

4. Let (Fn)n be as above. Then λFn ≤ λFn+1 ≤ λF . Hence, limn λFn exists and is ≤ λF .
To get the reverse inequality, we use

E(α, F ) =
∞⋃
n=1

E(α, Fn).

To get the ⊆ containment, if |F (x)| > α, then there exists n such that |Fn(x)| > α.
Note that E(α, Fn) ⊆ E(α, Fn+1) ⊆ E(α, F ) for all n. Since µ is a measure,

µ(E(α, F )) = µ

( ∞⋃
n=1

E(α, Fn)

)
= lim

n
µ(E(α, Fn)).

Definition 1.7. Weak Lp, denoted Lp(µ,weak), os the set of measurable functions F :
X → C such that [F ]p <∞, where

[F ]p = sup
α∈(0,∞)

αpλF (α).

Remark 1.5. Lp(µ) ⊆ Lp(µ,weak).

These are not the same. What is the difference? We will show that being in weak Lp is
equivalent to

∫∞
0 αp−1λF (α) dα < ∞. So F ∈ Lp means that αp−1λF ∈ L1((0,∞)), while

F ∈ Lp(µ,weak) means that αpλF ∈ L∞(0,∞).
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2 Integration With Push-Forward Measures and Distribu-
tion Functions

2.1 Integration with push-forward measures

Let (X,M, µ) be a measure space, and let 0 < p <∞.

Definition 2.1. Let (Y,N , ν) be another measure space, and let T be a measurable map.
We say that T pushes µ forward to ν if ν(B) = µ(T−1(B)) for all B ∈ N .

Proposition 2.1. T pushes µ forward to ν if and only if∫
Y
f dν =

∫
X
f ◦ T dµ,

for all f ∈ L1(ν).

Proof. We can restate the condition in the definition as∫
Y
f dν =

∫
X
f ◦ T dµ,

where f = 1B. By linearity, this holds for when f is a simple function. This means that if
f : Y → [0,∞] is ν-measurable, then

∫
Y f dν =

∫
X f ◦ T dµ. By linearity, this holds for all

f ∈ L1.

Recall that if F ∈ NBV(R), there exists a unique Borel complex measure such that
µF ((−∞, x]) = F (x).

Proposition 2.2. Assume f : X → C is measurable and λf (α) < ∞ for all α > 0. If
φ : (0,∞)→ R is Borel, then∫

X
φ ◦ |f | dµ =

∫ ∞
0

φ(α) dµ−λf (α).

In other words, |f |∗µ = µ−λf .

Proof. It suffices to show the proposition when φ = 1E and E ⊆ (0,∞) is Borel. In fact,
it is not a loss of generality to further assume E = (a, b], where −∞ < a < b < ∞. We
need to check that µ−λf (E) = µ(x : {|f(x)| ∈ E}). We have

µ({x : |f(x)| ∈ E}) = µ({x : a < |f(x)| ≤ b})
= µ({x : a < |f(x)|})− µ({x : b < |f(x)|})
= λf (a)− λf (b)

= µ−λf ((a, b])

= µ−λf (E).
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2.2 Integration with respect to distribution functions

Proposition 2.3. Let f : X → C be a simple function such that f ∈ Lp(µ).

1. For all 0 < ε1 < ε2, λf ∈ BV([ε1, ε2]).

2. ∫
X
|f |p dµ(x) = p

∫ ∞
0

αp−1λf (α) dα.

Here is a wrong proof: Let φ(t) = |t|p. Then, using integration by parts,∫
X
φ(|f |) dµ =

∫ ∞
0

φ(α) d(−λf ) = −
∫ ∞

0
φ′(α)︸ ︷︷ ︸
pαp−1

(−λf ) dα+ −λfφ|∞0 .

Proof. Write f =
∑n

i=1 ai1Ai , where the Ai are measurable and pairwise disjoint. We can
also assume ai are distinct. We have |f |p =

∑
i=1 |ai|p1Ai , so

n∑
i=1

|ai|pµ(Ai) =

∫
X
|f |p dµ <∞.

Let I = {ai : ai 6= 0}. Then ‖f‖pLp ≥ |ai|pµ(Ai) for all ai ∈ I. So

µ

⋃
ai∈I

Ai

 ≤ ‖f‖pLp ∑
aI∈I

1

|ai|p
=: γ.

If α > maxi=1,...,n |ai| := γ, then λf (α) = 0. If α > 0, {|f | < α} ⊆
⋃
ai∈I Ai, so λf (α) ≤ γ.

If ε1 < ε2 < ∞, then λf |[ε1,ε2] has range contained in [0, γ]. This proves that λf ∈
BV([ε1, ε2]).

Let b < γ. Then by the previous proposition,∫
X
|f |p dµ =

∫ ∞
0

αp dµ−λf (α)

=

∫ b

0
αp dµ−λf (α)

= lim
ε1→0

∫ b

ε1

αp d(−λf )

= lim
ε1→0

−
∫ b

ε1

αp−1(−λf )(α) dα+
�������
[−αpλf (α)]bε1

= p

∫ b

0
αp−1λf (α) dα.

Indeed, since λf is bounded, limα→0 α
pλf (α) = 0.
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Corollary 2.1. Let f ∈ Lp(µ). Then∫
X
|f |p dµ = p

∫ ∞
0

αp−1λf (α) dα.

Proof. Let fn : X → C be a sequence of simple functions such that |fn| ≤ |fn| ≤ |f | for all
n and |limn|fn| = |f |. By the previous proposition,∫

X
|fn|p dµ = p

∫ ∞
0

αp−1λfn(α) dα.

Since λfn ≤ λfn+1 ≤ λf and limn λfn = λf , we apply the dominated convergence theorem
to conclude the proof,
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3 Cutoff functions, The Riesz-Thorin Theorem, and Strong
and Weak Type

3.1 Cutoff functions

Definition 3.1. For f : C→ R, A > 0, the cutoff function φA ∈ C(C,C) is

φA(z) =

{
z |z| < A

Az/|z| |z| > A.

Note that φA(C) = BA(0) and φA(R) ⊆ R.

Theorem 3.1. Let f : X → C be measurable, and for A > 0, set

hA = φA ◦ f, gA = f − hA.

Then

λhA(α) =

{
λf (α) α < A

0 α ≥ A
, λgA(α) = λf (α+A).

Proof. Let α > 0. Since |hA| ≤ A, {hA > α} = ∅ if α ≥ A. This shows λhA(α) = 0. If
0 < α < A, then {|hA| > α} = {|f | > α}, so λhA(α) = λf (α).

Note that

gA = f − ϕA ◦ f =⇒ |gA| = |f − φA ◦ f | =

{
0 |f | < A

|f − f
|f |A| |f | > A.

Hence,

|gA| =

{
0 |f | < A

|f | −A |f | ≥ A.

So if α > 0, then {|gA| > α = {|f | −A > α} = {|f | < α+A}.

3.2 The Riesz-Thorin interpolation theorem

Throughout this section (interpolation of Lp spaces), (X,M, µ) and (Y,N , ν) are measure
spaces.

Let p < q < r. If t ≥ 0, then

tq ≤

{
tr t ≥ 1

tp 0 ≤ 0 ≤ 1.

So for any t ∈ R, |t|q ≤ |t|p + |t|r for all t. Hence, if f : X → C is µ-measurable, then
|f |q ≤ |f |r + |f |p. We get the following.

10



Proposition 3.1. Lr(µ) ∩ Lp(µ) ⊆ Lq(µ).

Recall that ν is called semifinite if for any E ∈ N such that ν(E) = ∞, there exists
F ∈ N such that F ⊆ E and 0 < ν(F ) <∞.

Theorem 3.2 (Riesz-Thorin interpolation theorem). Let 1 ≤ p0, q0, p1, q1 < ∞, and fur-
ther assume that ν is semifinite if q0 = q1 =∞. For t ∈ (0, 1), define pt and qt as

1

pt
=

1− t
p0

+
t

p1
,

1

qt
=

1− t
q0

+
t

q1
.

Assume T : Lp0(µ) + Lp1(µ) → Lq0(ν) + Lq1(ν) is a linear operator such that there are
M0,M1 ≥ 0 such that

‖Tf‖Lq0 (ν) ≤M0‖f‖Lp0 (µ), ‖Tg‖Lq1 (ν) ≤M1‖g‖Lp1 (ν)

for every f ∈ Lp0(µ) and g ∈ Lp1(µ). Then

‖Th‖Lqt (ν) ≤M1−t
0 M t

1‖h‖Lpt (µ)

for all h ∈ Lpt(µ).

Remark 3.1. It it not surprising that this is bounded. The particular bound is the
important part.

|Th|qt ≤ |Th|q0 + |Th|q1 ,

so
‖Th‖qtLqt ≤ ‖Th‖

q0
Lq0 + ‖Th‖q1Lq1 ≤M

q0
0 ‖h‖

q0
Lp0 +M q1

1 ‖h‖
q1
Lp1 .

We will not prove this theorem, as it involves a lemma that is technical and not very
instructive.

3.3 Strong type and weak type

Let D be a vector subspace of the set of (X,M, µ) measurable functions, and let F be the
set of (Y,N , ν) measurable functions.

Definition 3.2. We say that T : D → F os sublinear if

1. |T (f + g)| ≤ |Tf |+ |Tg|

2. |T (cf)| = c|Tf |

for all f, g ∈ D and c ≥ 0.
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Definition 3.3. Let T : D → F be a sublinear map, and let 1 ≤ p, q ≤ ∞. We say that T
is (p, q)-strong type if there exists c > 0 such that

‖Tf‖Lq ≤ c‖f‖Lp

for all f ∈ D. We say that T is (p, q)-weak type if there exists c > 0 such that

[Tf ]q ≤ c‖f‖Lp

for all f ∈ D, provided that q < ∞. We say that T is (p,∞)-weak type if T is (p,∞)-
strong type.

Remark 3.2. If f ∈ D but f /∈ Lp(µ), then the right hand side is ∞, satisfying the
inequality. So we could replace the condition with f ∈ Lp(µ).

We can rewrite the strong type condition as

q

∫ ∞
0

αq−1λT (f)(α) dα ≤ cq
(
p

∫ ∞
0

αp−1λf (α) dα

)q/p
.

Proposition 3.2. Assume f : X → C is measurable and 1 ≤ p <∞. Then

‖f‖pLp = p

∫ ∞
0

αp−1λf (α)α.

Proof. If f ∈ Lp(µ), we have already proved this. Otherwise, suppose f =
∑n

i=1 ai1Ai ,
where the Ai are measurable and pairwise disjoint. Since

∞ = ‖f‖pLp =
n∑
i=1

|ai|pµ(Ai),

there is i such that µ(Ai) =∞. We have λf ≥ λ|ai|1Ai . But λ|ai|1Ai
(α) =∞ if α ∈ (0, |ai|).

Now for general f , approximated it form below by step functions and apply the dominated
convergence theorem.
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4 Minkowski’s Inequality and The Marcinkiewicz Interpola-
tion Theorem

4.1 Minkowski’s inequality

Let f : X → C be measurable. For A > 0, set hA = φA ◦ f , gA = f − hA, where

φA(z) =

{
z |z| < A
z
|z|A |z| ≥ A.

Then

λhA(α) =

{
λf (α) 0 < α < A

0 α > A,
, λgA(α) = λf (A+ α).

Recall Minkowski’s inequality:

Theorem 4.1 (Minkowski’s inequality). Let 1 ≤ r < ∞, and let f : X × Y → [0,∞].
Then ∫

Y

(∫
X
|f(x, y)|r dµ(x)

)1/r

dν(y) ≥
(∫

X

(∫
Y
f(x, y) dν(y)

)r
dµ(x)

)1/r

.

4.2 The Marcinkiewicz interpolation theorem

Theorem 4.2 (Marcinkiewicz interpolation theorem). Let F be the set of measurable func-
tions on Y . Let 1 ≤ p0, p1, q0, q1 ≤ ∞ be real numbers such that p0 ≤ q0, p1 ≤ q1, and
q0 6= q1. Let t ∈ (0, 1), and let p, q be defined as

1

p
=

1− t
p0

+
t

p1
,

1

q
=

1− t
q0

+
t

q1
.

Assume that T : Lp0(µ) + Lp1(µ) → F be sublinear and of weak type (q0, p0) and (q1, p1)
(there are c0, c1 > 0 such that if q0, q1 6=∞, (αq0λT (f))

1/q0 ≤ c0‖f‖p0 and (αq1λT (f))
1/q1 ≤

c1‖f‖p1). Then the following hold:

1. T is strong type (p, q) (there exists Bp > 0 such that ‖Tf‖q ≤ Bp‖f‖p for all f ∈
Lp(µ)).

2. If p0 < ∞, then limp→p0 Bp|p0 − p| < ∞. If p1 < ∞, then limp→p1 Bp|p1 − p| < ∞.
If p0 = ∞, (Bp) remains bounded as p → p0. If p1 = ∞, (Bp) remains bounded as
p→ p1.

Proof. We skip the proof in the case p1 = p0. Let us assume q0, q1 <∞.
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Consider

p0

q0

q − q0

p− p0
=
p0

q0

q0

p0

q
q0
− 1

p
p0
− 1

=
q

p
·

1
q0
− 1

q
1
p0
− 1

p

=
q

p
·

1
q0
− (1−t

q0
+ t

q1
)

1
p0
− (1−t

p0
+ t

p1
)

=
q

p

1
q0
− 1

q1
1
p0
− 1

p1

.

Also consider
p1

q1

q − q1

p− p1
=
q

p

1
q0
− 1

q1
1
p0
− 1

p1

.

Set

r =
p0

q0

q − q0

p− p0
=
p1

q1

q − q1

p− p1
.

We have

‖gA|p0Lp0 = p0

∫ ∞
0

αp0−1λgA(α) dα = p0

∫ ∞
0

αp0−1λf (A+α) dα = p0

∫ ∞
A

(β−A)p0−1λf (β) dβ

So

‖gA‖p0p0 ≤ p0

∫ ∞
A

βp0−1λf (β) dβ.

We have

‖hA‖p1p1 = p1

∫ ∞
0

λhA(α)αp1−1 dα = p1

∫ A

0
λf (α)αp1−1 dα.

We also have

‖Tf‖qq0 = q

∫ ∞
0

αq−1λT (f)(α) dα = q

∫ ∞
0

(2β)q−1λTf (2β) d(2β).

Since f = gA + hA, we get that |Tf | = |T (gA + hA)| ≤ |TgA|+ |ThA|, So

λ|Tf |(2β) ≤ λTgA(β) + λThA(β).

This lets us get

‖Tf‖qq0 ≤ 2q−1q

∫ ∞
0

βq−1 (λTgA(β) + λThA(β)) dβ.

Use the weak-type condition with f replaced by gA and with f replaced by hA to
conclude that

‖Tf‖qLq ≤ 2q−1q

∫ ∞
0

αq−1
((c0

α

)q
0
‖gA‖q0p0 +

(c1

α

)p1
‖hA‖p1p1

)
dα

= 2q−1qcq00

∫ ∞
0

αq−1−q0‖gA‖q0p0 dα︸ ︷︷ ︸
I

+2q−1qcq11

∫ ∞
0

αq−1−q1‖hA‖q1p1 dα︸ ︷︷ ︸
II

.
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We have

I ≤
∫ ∞

0
αq−1−q0 dαp

q0/p0
0

(∫ ∞
A

βp0−1λf (β) dβ

)q0/p0
The above inequality holds for every A > 0. Let r > 0 and choose A = αr (it will turn out
that r is the value we computed earlier). We will finish the proof next time.
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5 The Marcinkiewicz Interpolation Theorem (cont.)

Today’s lecture was given by a guest lecturer, Alpár Mészáros.

5.1 Continuation of the proof

Last time, we were proving the Marcinkiewicz interpolation theorem.

Theorem 5.1 (Marcinkiewicz interpolation theorem). Let F be the set of measurable
functions on Y . Let 1 ≤ p0, p1, q0, q1 ≤ ∞ be real numbers such that p0 ≤ q0, p1 ≤ q1, and
q0 6= q1. Let t ∈ (0, 1), and let p, q be defined as

1

p
=

1− t
p0

+
t

p1
,

1

q
=

1− t
q0

+
t

q1
.

Assume that T : Lp0(µ) + Lp1(µ) → F be sublinear and of weak type (q0, p0) and (q1, p1)
(there are c0, c1 > 0 such that if q0, q1 6=∞, (αq0λT (f))

1/q0 ≤ c0‖f‖p0 and (αq1λT (f))
1/q1 ≤

c1‖f‖p1). Then the following hold:

1. T is strong type (p, q) (there exists Bp > 0 such that ‖Tf‖q ≤ Bp‖f‖p for all f ∈
Lp(µ)).

2. If p0 < ∞, then limp→p0 Bp|p0 − p| < ∞. If p1 < ∞, then limp→p1 Bp|p1 − p| < ∞.
If p0 = ∞, (Bp) remains bounded as p → p0. If p1 = ∞, (Bp) remains bounded as
p→ p1.

Proof. The general idea is the decompose the function f into two parts: for A > 0, cut
off the function f if it exceeds A. So if E(A) = {x : |f(x)| > A}, we define hA =
f1X\E(A) +A1E(A) and gA = f − hA. First assume q0 6= q1, and assume q0, q1 <∞. Take
q as in the theorem. If f ∈ Lp0 + Lp1 , then

‖Tf‖qq = q

∫ ∞
0

αq−1λTf (α) dα

Since T is sublinear, we have λTf (2α) ≤ λTgA(α)+λThA(α) for all α,A > 0 (independently
of each other). We get, after a change of variables,

‖Tf‖qq ≤ q2q
∫ ∞

0
αq−1λTf (2α) dα ≤ 2qq

∫ ∞
0

αq−1λThA(α)︸ ︷︷ ︸
=I1

+αq−1λTgA(α) dα︸ ︷︷ ︸
=I2

.

Look at I2:

I2 = 2qq

∫ ∞
0

αq−1α
q0

αq0
λTgA(α) dα

16



≤ 2qq

∫ ∞
0

αq−q0−1[TgA]q0q0 dα

≤ 2qq

∫ ∞
0

αq−q0−1(c0‖gA‖p0)q0 dα

= 2qqCq00

∫ ∞
0

αq−q0−1‖ga‖q0p0 α.

Now

‖gA‖p0p0 = p0

∫ ∞
0

αp0−1λhA(α) dα

= p0

∫ ∞
0

αp0−1λf (α+A) dα

= p0

∫ ∞
A

(α−A)p0−1λf (α) dα

≤ p0

∫ ∞
A

αp0−1λf (α) dα

‖hA‖p0p0 = p0

∫ ∞
0

αq0−1λhA(α) dα = p0

∫ A

0
αp0−1λf (α) dα

Combing back to ‖Tf‖qq, we get

‖Tf‖qq ≤ 2qqCq00

∫ ∞
0

αq−q0−1‖gA‖q0p0 dα+ 2qqCq11

∫ ∞
0

αq−q1−1‖hA‖q1p1

≤ 2qqCq00

∫ ∞
0

αq−q0−1

(
p0

∫ ∞
A

βp0−1λf (β) dβ

)q0/p0
dα

+ 2qqCq11

∫ ∞
0

αq−q1−1

(
p1

∫ A

0
βp1−1λf (β) dβ

)q1/p1
dα

=
1∑
j=0

2qqC
qj
j p

qj/pj
j

∫ ∞
0

(∫ ∞
0

φ(α, β) dβ

)
dα,

where
φ(α, β) := 1j(α, β)βpj−1λf (β)α(q−qj−1)pj/qj ,

10 is the indicator of {(α, β) : β > A}, and 11 is the indicator of {(α, β) : β < A}.
In remains to study the terms separately with a special choice of A. Using Minkowski’s

inequality,

∫ ∞
0

(∫ ∞
0

φj(α, β) dβ

)qj/pj
dα ≤

(∫ ∞
0

(∫ ∞
0

φj(α, β)qj/pj dβ

)pj/qj
dα

)qj/pj
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Choose σ > 0 and set A = ασ. Then α ≤ β1/σ. The inside of the above integral for j = 0
is (for a special choice of σ),

∫ ∞
0

(∫ β1/σ

0
αq−q0−1 dα

)p0/q0
βp0−1λf (β) dβ =

∫ ∞
0

1

q − q0

(
[α]β

1/σ

0

)p0/q0
βp0−1λf (β) dβ

= (q − q0)−p0/q0
∫ ∞

0
βp0−1+(q−q0)/σλf (β) dβ

= (q − q0)−p0/q0
∫ ∞

0
βp−1λf (β) dβ

= (q − q0)−p0/q0p−1‖f‖pp.

The other term is similar. We will finish the proof next time.
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6 The Marcinkiewicz Interpolation Theorem (cont.)2

Today’s lecture was given by a guest lecturer, Alpár Mészáros.

6.1 Conclusion of the proof

Last time, we were proving the following theorem.

Theorem 6.1 (Marcinkiewicz1 interpolation theorem). Let F be the set of measurable
functions on Y . Let 1 ≤ p0, p1, q0, q1 ≤ ∞ be real numbers such that p0 ≤ q0, p1 ≤ q1, and
q0 6= q1. Let t ∈ (0, 1), and let p, q be defined as

1

p
=

1− t
p0

+
t

p1
,

1

q
=

1− t
q0

+
t

q1
.

Assume that T : Lp0(µ) + Lp1(µ) → F be sublinear and of weak type (q0, p0) and (q1, p1)
(there are c0, c1 > 0 such that if q0, q1 6=∞, (αq0λT (f))

1/q0 ≤ c0‖f‖p0 and (αq1λT (f))
1/q1 ≤

c1‖f‖p1). Then the following hold:

1. T is strong type (p, q) (there exists Bp > 0 such that ‖Tf‖q ≤ Bp‖f‖p for all f ∈
Lp(µ)).

2. If p0 < ∞, then limp→p0 Bp|p0 − p| < ∞. If p1 < ∞, then limp→p1 Bp|p1 − p| < ∞.
If p0 = ∞, (Bp) remains bounded as p → p0. If p1 = ∞, (Bp) remains bounded as
p→ p1.

Proof. Without loss of generality we can assume p0 < p1. We showed that

‖Tf‖qq ≤
1∑
j=0

2qqC
qj
j p

qj/pj

∫ ∞
0

(∫ ∞
0

φj(α, β) dβ

)qj/pj
dα.

Here,
φj(α, β) := 1j(α, β)βpj−1λf (β)α(q−qj−1)pj/qj ,

where 10 is the indicator of {(α, β) : β > A} and 11 is the indicator of {(α, β) : β < A}.
We want to set A = ασ for some good choice of σ. Look at the term with φ0.

Case 1: σ > 0: If β > ασ, then α < β1/σ. After Minkowski’s inequality,∫ ∞
0

(∫ β1/σ

0
αq−q0−1 dα

)p0/q0
βp0−1λf (β) dβ

=

∫ ∞
0

(
1

q − q0

)p0/q0
β(q−q0)p0/(q0σ)βp0−1λf (β) dβ

1Marcinkiewicz was a Polish mathematician who died during WWII. Zygmund discovered afterwards
that he proved this result and gave credit to Marcinkiewicz.
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Now pick

σ =
p0

q0

q0 − q
p0 − p

> 0.

Since we want this to be positive, we need to assume that q0 < q1. The previous quantity
becomes (

1

q − q0

)p0/q0
p−1‖f‖pp.

If q0 > q1, then σ < 0. So β > α =⇒ α > β1/σ. Then what changes is the integral
becomes an integral

∫∞
0

∫∞
β1/σ . We get

∫ ∞
0

1

q − q0

(
[αq−q0 ]∞

β1/σ

)p0/q0
dβ =

(
1

q0 − q

)p0/q0
p−1‖f‖pp.

For the term involving φ1, the computation is very similar with (p1, q1) instead of
(p0, q0). The key property here is that

σ =
p0

q0

q0 − q
p0 − p

=
p1

q1

q1 − q
p1 − p

,

which follows from the construction of p, q.
Remaining case 1: Assume that p1 = q1 = ∞. Then ‖Tf‖∞ ≤ C1‖f‖∞ (because

(∞,∞)-weak means (∞,∞)-strong). We have ‖ThA‖∞ ≤ C1‖hA‖∞. We want to choose
A in a way that φ1 becomes 0. We claim that A = α/C1 works. In this case, β < α/C1.
We get

‖ThA‖∞ ≤ C1‖hA‖∞ ≤ C1A = C1
α

C1
= α.

We have
1{β<α/C1}λf (β) = 1{β<α/C1}λfhA(β) = 0,

so φ1 does not give a contribution. Do the same computation with φ0, replacing ασ with
α/C1.

Remaining case 2: Assume p0 < p1 < ∞ and q0 < q1 = ∞. Choose A in a way such
that λThA(β) = 0 (‖ThA‖∞ ≤ C1‖f‖p1). If we choose A = (α/d)σ, where σ = p1/(p1 − p)
and d = C1[p1‖f‖pp/p]1/p1 , we get

‖ThA‖ ≤ α.

Remaining case 3: If p0 < p1 < ∞ and q1 < q0 = ∞, we want that λTgA(α) = 0. In
this case, choose A such that A = (α/d)σ.

We have obtained that
‖Tf‖qq ≤ constant ‖f‖pp.

Define Bp such that sup{‖Tf‖q : ‖f‖p = 1} ≤ Bp. You can write down the constant
explicitly in all cases.
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6.2 Lp-estimates for the Hardy-Littlewood Maximal function

For f ∈ L1
loc, let

(Hf)(x) = sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)| dy

be the Hardy-Littlewood maximal function. ThenH is sublinear. H is (∞,∞)-strong type.
We can show that H is (1, 1)-weak type. By the Marcinkiewicz interpolation theorem, we
get that

‖Hf‖p ≤ C(n)
p

p− 1
‖f‖p

for any p ∈ (1,∞].
However, H is not (1, 1)-strong type. Come up with an example as an exercise.
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7 Bounds on Kernel Operators

7.1 Strengthening of a previous theorem

We will prove a stronger version of the following theorem.

Theorem 7.1. Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces. Let K : X×Y → R
be M⊗N -measurable, and let F be the set of f : Y → R measurable functions such that
K(x, ·)f ∈ L1 for µ-a.e. x ∈ X. For f ∈ F , define

Tf(x) =

∫
Y
K(x, y)f(y) dν(y).

Assume there exists C > 0 such that∫
Y
|K(x, y)| dν(y) ≤ C

for µ-a.e. x ∈ X and ∫
X
|K(x, y)| dµ(x)

for ν-a.e. y ∈ Y . The the following conclusions hold:

1. For any 1 ≤ p <∞, Lp(ν) ⊆ F .

2. There exists Cp such that ‖Tf‖ ≤ Cp‖f‖p if f ∈ Lp(ν).

Recall that if A > 0, then

φA(z) =

{
z |z| < A
z
|z|A |z| ≥ A

is a function in C(C,C), and φA|R ∈ C(R,R). Observe that

z − φA(z) =

{
0 |z| < A
z
|z|(|z| −A) |z| ≥ A.

We shall use the notation

K1 = KA
1 = K − φA(K), K2 = KA

2 = φA(K).

Denote as Ti (i = 1, 2) the operators associated to Ki (i = 1, 2).

Theorem 7.2. Let 1 ≤ p < ∞ and c > 0. Assume that [K(x, ·)]q ≤ C for µ-a.e. x ∈ X
and [K(·, w)]w ≤ C for ν-a.e. y ∈ Y .
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1. If 1 ≤ p <∞, Lp(ν) ⊆ F .

2. If 1 < p < r <∞, then there exist B1 > 0 and Bp > 0 such that [Tf ]q ≤ B1‖f‖1 and
‖Tf‖r ≤ CBp‖f‖p, which means T is weak type (1, q) and strong type (p, r), provided
that 1/r + 1 = 1/p+ 1/q.

Proof. Let f ∈ Lp(ν); we want f ∈ F . If f = 0, we are done. If f 6= 0, it suffices to show
that f/‖f‖p ∈ F . So we need only show that if ‖f‖p = 1, then f ∈ F . For the second
conclusion, let f ∈ Lp. If f = 0, then the conclusion holds. If f 6= 0, then we can again
reduce to the case ‖f‖p = 1 by passing to f/‖f‖p. So it suffices to prove both parts when
‖f‖p = 1.

Let f ∈ Lp(ν) be such that ‖f‖ = 1. Let q′ be the dual conjugate of q, and let p′

be the dual conjugate of q. We have 1/r = 1/p + 1/q − 1 = 1/p − 1/q′, and similarly,
1/r = −1/q′ + 1/q. Since r > 0, 1/p > 1/q′, and 1/q > 1/p′. So q′ > p, and p′ > q. We
have

αqλK(x,·)(α) ≤ C, αqλK(·,y)(α) ≤ C.

To show that |K(x, ·)f | ∈ L1(ν), we are going to show that |Ki(x, ·)f | ∈ L1(ν) for i = 1, 2.
We have ∫

Y
|K1(x, y)| dν(y) =

∫ ∞
0

λK1(x,·)(α) dα =

∫ ∞
0

λK(x,·)(α+A) dα

=

∫ ∞
A

λK(x,·)(α) dα ≤ C
∫ ∞
A

α−q dα = C
A1−q

q − 1
.

The similar identity holds for
∫
X |K1(x, y)| dµ(x), so we have∫

Y
|K(x, y)| dν(y),

∫
X
|K(x, y)| dµ(x) ≤ CA

1−q

q − 1
.

We have∫
Y
|K2(x, y)|p′ dν(y) = p′

∫ ∞
0

λK2(x,·)(α)αp
′−1 dα = p′

∫ A

0
λK(x,·)(α)αp

′−1

≤ p′
∫ A

0
Cαp

′−1−q dα = C
p′

p′ − q
Ap
′−q.

By symmetry, we get that∫
Y
|K2(x, y)|p′ dν(y),

∫
X
|K2(x, y)|p′ dµ(x) ≤ C p′

p′ − q
Ap
′−q.

Apply Hölder’s inequality to conclude that∫
Y
|K2(x, y)f(x)| dν(y) ≤

(∫
Y
|K2(x, y)|p′ dν(y)

)1/p′

‖f‖p ≤
(
C

p′

p′ − q

)1/p′

A1−q/p′
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So K2(x, ·)f ∈ L1(ν). Using the previous theorem, we conclude that K1(x, ·)f ∈ L1(ν). In
conclusion, K(x, ·)f ∈ L1(ν), which implies that Lp(ν) ⊆ F .

Choosing an appropriate A: By our inequality,

‖T2f‖ ≤
(
C

p′

p′ − q

)1/p′

A1−q/p′ .

Choose A such that(
C

p′

p′ − q

)1/p′

Aq/r =

(
C

p′

p′ − q

)1/p′

A1−q/p′ =
α

2
.

That is, we choose

A =

[(
C

p′

p′ − q

)1/p′

Aq/r

]r/q
.

By assumption, ‖T2f‖ ≤ α/2, and so λT2f (α/2) = 0.

Next time, we will finish the proof.
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8 Bounds on Integral Operators (cont.)

8.1 Proof of the weak and strong type properties

Last time, we were proving the following theorem:

Theorem 8.1. Let 1 ≤ p < ∞ and c > 0. Assume that [K(x, ·)]q ≤ C for µ-a.e. x ∈ X
and [K(·, w)]w ≤ C for ν-a.e. y ∈ Y .

1. If 1 ≤ p <∞, Lp(ν) ⊆ F .

2. If 1 < p < r <∞, then there exist B1 > 0 and Bp > 0 such that [Tf ]q ≤ B1‖f‖1 and
‖Tf‖r ≤ CBp‖f‖p, which means T is weak type (1, q) and strong type (p, r), provided
that 1/r + 1 = 1/p+ 1/q.

Proof. It remains to show the second conclusion. We have fixed f such that ‖f‖p = 1. We
have already obtained the following useful identities:∫

X
|K1(x, y)| dν(y),

∫
K
|K1(x, y)| dν(x) ≤ CA

1−q

q − 1

‖T2f‖ ≤ Aq/r
(
cr

q

)1/p

,
1

p
+

1

p′
= 1.

We chose A such that Aq/r(cr/q)1/p′ = α/2. These give us

λT2f (α/2) = 0.

So
λTf (α) ≤ λT1f (α/2) + λT2f (α/2) = λT1f (α/2).

Now apply the following observation to h = T1f :∫
|h|p dν ≥

∫
{|h|>α/2}

|h|p dν ≥
(α

2

)p
λh(α/2) =⇒ λh(α/2) ≤

(α
2

)−p
‖h‖pp.

We get

λTf (α) ≤
(α

2

)−p
‖T1f‖pp

≤
(α

2

)−p(
c
A1−q

q − 1

)p
=
(α

2

)−p( c

q − 1
αr/q

[
1

2

( q
cr

)1/p′
]r/q)(1−q)p

= α−p+r/q(1−q)pC(q, p).
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Now we note that

−p+ r/q(1− q)p = p((1/q − 1)− 1) = p(r(1/r − 1/p)− 1) = −r/p.

So, by homogeneity,
αrλTf (α) ≤ C(q, p)‖f‖rp.

In particular, when p = 1, then r = q, and we get that

αqλTf (α) ≤ C(q, 1)‖f‖qq.

That is, T is weak type (1, q).
We next need to find (p1, r1) such that T is weak type (p1, r1), where q ≥ 1 and p1 ≤ r1.

Choose p1 ∈ (p,∞) close enough to p. Let t ∈ (0, 1) be such that

1

p
=

1− t
1

+
t

p1
.

Define r1 by
1

r
=

1− t
q

+
t

r1
.

Since p is close to p1, r is close to r1. By the definition of r1,r1 < r. We have

αr1λTf (α) ≤ C(q, p1)‖f‖r1p1 .

This means that T is weak type (p1, r1). Since T is also weak type (1, q) the Marcinkiewicz
interpolation theorem gives us that T is strong type (p, r).

8.2 Preliminaries for Fourier analysis

Notation: We will assume that n ≥ 1 is a natural number. If x = (x1, . . . , xn), (y1, . . . , yn) ∈
Rn, then

x · y =
n∑
i=1

xiyi, ‖x‖2 = x · x.

If α ∈ Nn, then

|α| =
n∑
i=1

αi, α! =

n∏
i=1

(αi!).

We will also write

xα = (xα1
1 , . . . , xαnn ), ∂αx =

∂|α|

∂xα
=

∂α1

∂xα1
1

· · · ∂
αn

∂xαn1

.
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With this notation, the Taylor expansion is

f(x) =
∑
|α|≤k

1

α!

∂|α|f

∂xα
(x0)(x− x0)α +Rk(x), where lim

x tox0

Rk(x)

|x− x0|k
= 0.

Define

η(t) =

{
e−1/t t > 0

0 t ≤ 0.

We have η ∈ C∞(R), as
xn

ex
x→∞−−−→ 0

for each n. By induction, we can show that η(k)(0) = 0 for all k ≥ 1.
For x ∈ Rn, set

ρ(x) = η(1− ‖x‖2) =

{
e1/(‖x‖2−1) ‖x‖ < 1

0 ‖x‖ > 1.

Then supp(ρ) = B1(0), ρ ∈ C∞, ρ > 0, and ρ(−x) = x.
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9 The Schwarz Space

9.1 Topology of the Schwarz space

Definition 9.1. Given N ≥ 0 and α ∈ Nn (N = {0, 1, 2, . . . }), we define the seminorm of
f ∈ C∞(Rn)

‖f‖(N,α) := sup
x

(1 + |x|)N |∂αf(x)|.

The Schwarz space is S = {f ∈ C∞(Rn) : ‖f‖(N,α) <∞∀N ∈ N, α ∈ Nn}.

Example 9.1. If f ∈ C∞(Rn) with compact support, then f ∈ S.

Example 9.2. |∂α(e−|x|
2
)| ≤ c(1 + |x|2|α|)e−|x|2 .

S is endowed with a topology induced by the seminorm as follows: (fk)k ⊆ S converges
to f ∈ S iff

lim
k→∞

‖fk − f‖(N,α) = 0

for all N ∈ N and α ∈ Nn. Recall that a Freéchet is a complete, Hausdorff, topological
vector space whose topology is induced by a countable family of seminorms.

Proposition 9.1. S is a Fréchet space.

Proof. Hausdorff: Given f ∈ S and ε > 0, U ε(N,α) = {g ∈ S : ‖f−g‖(N,α) < ε} are the open
sets that generate the topology of S. Let f1, f2 ∈ S be distinct. Let x0 ∈ Rn be such that
4δ := |f1(x0)−f2(x0)| > 0. Since |f1−f2| is continuous, there exists an open neighborhood
O of x0 such that |f1(x) − f2(x)| ≥ 3δ for all x ∈ O. We have U δ(0,0)(f1) ∩ U δ(0,0)(f2) = ∅.
This proves that S is a Hausdorff space.

Completeness: Let (fk)k ⊆ S be a Cauchy sequence: limk,`→∞ ‖fk − f`‖(N,α) = 0 for
all N ∈ N, α ∈ Nn. Taking N = 0 for each α, we obtain that (∂αfk)k is a Cauchy sequence
for the uniform norm, and so (∂αfk)k converges uniformly to some gα ∈ C(Rn). We claim
that supx(1 + |x|)Ngα(x) < ∞. We have (1|x|)n|∂αfk − ∂αf`| ≤ ε for large k, `. Letting
`→∞, we get 1|x|)n|∂αfk − gα| for large k. Then

(1 + |x|N |gα| ≤ (1 + |x|)N |gα(x)− ∂αfk(x)|︸ ︷︷ ︸
≤ε

+(1 + |x|)N |∂αfk(x)| <∞.

It remains to show that g0 ∈ C∞(Rn) and ∂αg0 = gα. By Taylor’s expansion,

fk(x+ h) = fk(x)−∇fk(x)h =

∫ 1

0

∫ 1

0
(∇2fk(x+ tsh))h · h) ds dt.

Thus,

|fk(x+ h)− fk(x)− h · ∇fj(x)| ≤ |h|
2

2
M, M = sup

k
sup
|α|=2

‖fk‖(0,∞).
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Letting k →∞, we obtain∣∣∣∣∣g0(x+ h)− g0(x)−
n∑
i=1

g(0,··· ,0,1,0,...,0)(x)hi

∣∣∣∣∣ ≤ M

2
‖h‖2.

Since g(0,··· ,0,1,0,...,0)(x) is continuous, we conclude that g0 is differentiable at x and that
∂
∂xi
g0(x) = g(0,...,0,1,0,...,0)(x). Increasing the rank of the expansion, we obtain the desired

result. So gα = ∂αf .

9.2 Equivalent characterizations of functions in the Schwarz space

Proposition 9.2. Let f ∈ C∞(Rn). The following are equivalent:

1. f ∈ S.

2. xβ∂αf is bounded for any β, α ∈ Nn.

3. ∂α(xβf) is bounded for any β, α ∈ Nn.

Proof. (1) =⇒ (2): Let α, β ∈ Nn. Then

|xβ||∂αf(x)| ≤ (1 + |x|)|β||∂αf(x)| ≤ ‖f‖(|β|,α).

(2) =⇒ (3): We have

∂α(xβf) =
∑

a∈A,b∈B
xa∂bf,

where A and B are finite sets determined by α, β. Thus,

|∂α(xβf(x))| ≤
∑

a∈A,b∈B
‖xα∂bβ‖ <∞.

(3) =⇒ (1): We have ‖∂αf‖∞ < ∞ for all α ∈ Nn. It remains to show that
‖(1 + |x|)N∂αf(x)‖∞ <∞. Fix an integer N ≥ 1. Then

δN := min{
n∑
i=1

|xi|N : ‖x‖ = 1} > 0.

Hence,

δN ≤
n∑
i=1

∣∣∣∣ xi‖x‖
∣∣∣∣N =

1

‖x‖N
N∑
i=1

|xi|N .

So

‖x‖N ≤ 1

δN

n∑
i=1

|xi|N .
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It remains to show that ‖|xi|N∂αf‖∞ <∞. We have for N = 1 that

∂xj (xi∂
αf) = δi,j∂

αf + xi∂xj∂
αf,

so
‖xi∂xj∂αf‖ ≤ ‖∂xj (xi∂αf)‖∞ + ‖∂ααf‖j∞.

Repeat the process for N = 2, 3, . . . .
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10 Translation and Convolution

10.1 Translations of functions

Definition 10.1. Given f : Rn → R and y ∈ Rn, define the translation τyf : Rn → Rn
by

(τyf)(x) = f(x− y).

Remark 10.1. If 1 ≤ p ≤ ∞ and y ∈ R, τy : Lp → Lp is an isometry.

Remark 10.2. If f ∈ Rn → R, then f is uniformly continuous if and only if the limit
limy→0 ‖τyf − f‖u = 0. Indeed,

sup
‖y‖≤δ

‖τy − f‖u = sup
‖z−y‖≤δ

|f(y)− f(z)|.

Remark 10.3. If f : Rn → R is supported by the ball BR(0), then

‖τyf − f‖pp ≤ |BR+1(0)|1/p‖τy − f‖∞

whenever ‖y‖ ≤ 1. Indeed,∫
Rn
|f(x)− f(x− y)|p dx =

∫
BR+1(0)

|f(x)− f(x− y)|p dx.

Let Cc(Rn) be the set of continuous functions Rn → R with compact support.

Lemma 10.1. If g ∈ Cc(Rn), then g is uniformly continuous.

Proof. Let BR−1(0) with R > 1 be a ball containing the support of g ∈ Cc(Rn). Then g is
uniformly continuous on BR(0). Set

δ(r) = sup
‖x−y‖<r

‖x‖,‖y‖≤R+1

|g(x)− g(y)|.

We have

|g(x)− g(y)| ≤


0 ‖y‖ ≥ R, ‖x‖ ≥ R+ 1

|g(x)− g(x0)| ‖y‖ < R, ‖x‖ ≥ R+ 1

0 ‖x‖ ≥ R, ‖y‖ ≥ R+ 1

|g(x)− g(z0)| ‖x‖ ≤ R, ‖y‖ ≥ R+ 1.

Consequently,
sup

‖x−y‖≤r
|g(x)− g(y)| ≤ δ(r).

So g is uniformly continuous.
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Proposition 10.1. If 1 ≤ p <∞, then τy converges pointwise to the identity map in Lp:

lim
y→0
‖τyf − f‖p = 0.

Proof. Let f ∈ Lp. For any g ∈ Cc(Rn) and y ∈ Rn, we have

‖τyf − f‖p ≤ ‖τyf − τyg‖p + ‖τyg − g‖p + ‖g − f‖p
= 2‖f − g‖+ ‖τyg − f‖p
≤ 2‖f − g‖+ |BR|1/p‖τyg − f‖u,

where BR−1(0) is a ball containing the support of g. Since g is uniformly continuous, we
conclude

lim sup
y→0

‖τyf − f‖p ≤ 2‖f − g‖p.

Since Cc(Rn) is dense in Lp,
lim sup
y→0

‖τyf − f‖p = 0.

10.2 Convolution

Definition 10.2. Let f, g : Rn → R be measurable, and let x ∈ Rn be such that y 7→ τyfg
is integrable. Then we define the convolution of f and g as

(f ∗ g)(x) =

∫
Rn
f(x− y)g(y) dy =

∫
τyf(x)g(y) dy.

Definition 10.3. The n-torus is Tn := Rn/Zn.

If x ∈ Rn, the equivalence class of x in Tn is x+ Zn = x̂. The metric on Tn is

‖x̂− ŷ‖Tn = inf
z∈Zn

|x− y − z|.

There is a bijection between Tn and Qn = [−1/2, 1/2)n. Consequently, there is a bijection
between Tn and Q̃n = {z = (z1, . . . , zn) ∈ Cn : |zi| = 1 ∀i}. Since Q̃n is compact, we
conclude that Tn is a compact set.

Proposition 10.2. If x ∈ Rn, f, g : Rn → R are masurable, and y 7→ τyf(x)g(y) is
integrable, then

(f ∗ g)(x) = (g ∗ f)(x).

Proof. Use the change of variables z = x− y:

(f ∗ g)(x) =

∫
Rn
f(x− y)g(y) dy

=

∫
Rn
f(z)g(x− z) dz

= (g ∗ f)(x).

32



11 Properties of Convolution and Young’s Inequality

11.1 Properties of convolution

Proposition 11.1. The convolution satisfies the following properties:

1. f ∗ g = g ∗ f

2. (f ∗ g) ∗ h = f ∗ (g ∗ h)

3. If z ∈ Rn, τx(f ∗ g) = (τzf) ∗ g = f ∗ (τzg).

4. If A = {x+ y : x ∈ supp(f), y ∈ supp(g)}, then supp(f ∗ g) ⊆ A.

Proof. Let f, g : Rn → R.

1. We have already proved this.

2. Let x ∈ Rn. We have

(f ∗ g) ∗ h(x) =

∫
Rn

(f ∗ g)(x− y)h(y) dy

=

∫
Rn×Rn

f(x− y − z)g(z)h(y) dy dz

But

f ∗ (g ∗ h)(x) =

∫ n

R
f(x− u)g ∗ h(u) du =

∫
Rn×Rn

f(x− u)g(u− v)h(v).

So set u = y and u− v = z. Then

x− y − z = x− v − (u− v) = x− u,

so the two expressions are equal.

3. We have

τz(f ∗ g)(z) = f ∗ g(x− z)

=

∫
Rn
f(x− z − y)g9y) dy

=

∫
Rn

(τzf)(x− y)g(y) dy

= (τzf) ∗ g(x).

Since f ∗ g = g ∗ f , we conclude that

τz(f ∗ g) = τz(g ∗ f) = (τzg) ∗ f = f ∗ (τzg).
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4. Assume x /∈ A. Observe that

f(x− y)g(y) =

{
0 y /∈ supp(g)

0 y /∈ supp(g).

Hence, f ∗ g(x) = 0. Then Ac ⊆ {f ∗ g = 0}, so {f ∗ g 6= 0} ⊆ A, which makes
{f ∗ g 6= 0} ⊆ A.

11.2 Young’s inequality

Our goal is that if 1 ≤ p, q, r <∞ and r−1 + 1 = p−1 + q−1, then

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

It is important to note here that this bound is independent of the dimension.

Theorem 11.1 (Young’s inequality). Let 1 ≤ q ≤ ∞, let f ∈ L1, and let g ∈ Lq. For a.e.
x ∈ Rn, f ∗ g(x) exists, and

‖f ∗ g‖q ≤ ‖f‖1‖g‖q.

Proof. Assume q <∞.

‖f ∗ g‖q =

(∫
Rn
|f ∗ g(x)|q dx

)1/q

=

(∫
Rn

∣∣∣∣∫
Rn
f(y)g(x− y) dy

∣∣∣∣q dx)1/q

Use Minkowski’s inequality.

≤
∫
Rn

(∫
Rn
|f(y)g(x− y)|q dx

)1/q

dy

=

∫
Rn
|f(y)|

(∫
Rn
|g(x− y)|q dx

)1/q

dy

Set z = x− y.

=

∫
Rn
|f(y)|‖g‖q dy = ‖f‖1‖g‖q.

If q =∞, the proof is simpler.

Definition 11.1. C0(Rn) = {f ∈ C(Rn) : {|f | ≥ ε} is compact ∀ε > 0} is the set of
functions that vanish at ∞.
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Remark 11.1. As a subspace of L∞, Cc(Rn) = C0(Rn).

Theorem 11.2. Let 1 ≤ p, q,≤ ∞ be conjugate exponents. Let f ∈ Lp and g ∈ Lq. Then

1. f ∗ g(x) exists for each x ∈ Rn, and

|f ∗ g| ≤ ‖f‖p‖g‖q.

2. f ∗ g is uniformly continuous.

3. If 1 < p <∞, then f ∗ g ∈ C0(Rn).

Proof. For p 6=∞, by Hölder’s inequality,

|f ∗ g(x)| =
∣∣∣∣∫

Rn
f(x− y)g(y) dy

∣∣∣∣ ≤ (∫
Rn
|f(x− y)|p dy

)1/p

‖g‖q = ‖f‖p‖g‖q.

If p =∞, the proof is easier.
To prove the second statement, it suffices to show that limy→0 ‖τy(f∗g)−f∗g‖u = 0.

We will finish the proof next time.
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12 More Properties of Convolutions and Generalized Young’s
Inequality

12.1 Uniform continuity and vanishing of convolutions

Let’s continue the proof of this statement from last time.

Theorem 12.1. Let 1 ≤ p, q,≤ ∞ be conjugate exponents. Let f ∈ Lp and g ∈ Lq. Then

1. f ∗ g(x) exists for each x ∈ Rn, and

|f ∗ g| ≤ ‖f‖p‖g‖q.

2. f ∗ g is uniformly continuous.

3. If 1 < p <∞, then f ∗ g ∈ C0(Rn).

Proof. We have already proven the first statement. To prove the second, it suffices to show
that

lim
y→0
‖(f ∗ g)− f ∗ g‖u = 0.

Note that if 1 ≤ p <∞,

τy(f ∗ g)− f ∗ g = ((τyf)− f) ∗ g.

So
‖τy(f ∗ g)− f ∗ g‖u ≤ ‖τyf − f‖p‖g‖q

y→0−−−→ 0,

When p =∞, q = 1, and we interchange the role of f and g.
Assume 1 < p <∞ so that 1 < q <∞. Choose (fk)k, (gk)k ∈ Cc(Rn) such that

lim
k→∞

‖f − fk‖p = 0 = lim
k→∞

‖g − gk‖q.

By the first proposition stated last time, fk ∗ gk ∈ Cc(Rn). We have

f ∗ g − fk ∗ gk = f ∗ (g − gk) + (f − fk) ∗ gk,

so
‖f ∗ g − fk ∗ gk‖u ≤ ‖f‖p‖f − fk‖q + ‖f − fk‖p‖gk‖q

k→∞−−−→ 0.

Since C0(Rn) is the closure of Cc(Rn) in the uniform norm, we get the result.
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12.2 Generalized Young’s inequality

Theorem 12.2. Let 1 ≤ p, q, r ≤ ∞ be such that 1 + r−1 = p−1 + q−1. Let f ∈ Lp.

1. (Generalized Young’s inequality) If g ∈ Lq, then

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

2. Further assume 1 < p, q, r < ∞ and g ∈ weak Lq, Then there is a constant Cp,q
independent of f, g such that

‖f ∗ g‖r ≤ Cp,q‖f‖p[g]q.

3. If p = 1 (so q = r < ∞), there exists a constant Cq independent of f such that for
any g ∈ weak Lq,

[f ∗ g]r ≤ Cq‖f‖1[g]q.

Proof. For now, we only prove the first statement. Split into cases:

1. r =∞: This is part 1 of the previous theorem (Young’s inequality).

2. p = 1, q = r: We have already proven this.

3. 1 < p, q, r < ∞. Since r−1 = p−1 + q−1 − 1 < q−1, q/r ∈ (0, 1). Set t = 1 − q/r.
Define the operator T as

(Tf)(x) = f ∗ g(x) =

∫
Rn
K(x, y)f(y) dy, K(x, y) = g(x− y).

We want to use the Riesz-Thorin interpolation theorem. By Young’s inequality,

‖Tϕ‖∞ ≤ ‖ϕ‖ q
q−1
‖g‖q.

Also,
‖Tϕ‖q ≤ ‖ϕ‖1‖g‖q.

If we set p0 = 1 and q0 = q and set p1 = q/(q − 1) and q1 = ∞, then we get that T
is weak type (p0, q0 and (p1, q1). Set t = 1 − q/r ∈ (0, 1), and define pt = 1−t

p0
+ t

p1
,

qt = 1−t
q0

+ t
qt

. By the Riesz-Thorin theorem,

‖Tf‖ ≤M1−t
0 M t

1‖f‖pt = ‖g‖q‖f‖pt ,

where M0 = M1 = ‖g‖q. Note that 1
qt

= 1−t
q + t

∞ = q
r

1
q = 1

r . Similarly, 1
pt

= 1
p .

37



13 Derivatives of Convolutions

13.1 Lp and weak Lp convolution inequalities

Last time, we proved the first part of the following theorem:

Theorem 13.1. Let 1 ≤ p, q, r ≤ ∞ be such that 1 + r−1 = p−1 + q−1. Let f ∈ Lp.

1. (Generalized Young’s inequality) If g ∈ Lq, then

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

2. Further assume 1 < p, q, r < ∞ and g ∈ weak Lq, Then there is a constant Cp,q
independent of f, g such that

‖f ∗ g‖r ≤ Cp,q‖f‖p[g]q.

3. If p = 1 (so q = r < ∞), there exists a constant Cq independent of f such that for
any g ∈ weak Lq,

[f ∗ g]r ≤ Cp‖f‖1[g]q.

Proof. To complete the proof of the theorem, observe that [K(x, ·)]q = [g(x− ·)]q = [g]q <
∞. Similarly, [K(·, y)]q = [g]q < ∞. By our interpolation theorem for kernel operators
with c = [g]q, we have

‖Tf‖r ≤ c‖f‖p, p > 1,

[Tf ]r ≤ CB‖f‖1, p = 1, r = q.

13.2 Convolution of Ck functions

Proposition 13.1. Let f ∈ Ck be such that ∂αf is bounded for any |α| ≤ k, and let
g ∈ L1. Then f ∗ g ∈ Ck and ∂α(f ∗ g) = ∂αf ∗ g

Proof. Proceed by induction on |α|. Assume then that |α| = 1. Note that

f(x+ h) = f(x) +∇f(x) · h+

∫ 1

0
(∇f(x+ th)−∇f(x)) · d dt.

Hence,

f ∗ g(x+ h) =

∫
Rn
f(x+ h− y)g(y) dy

=

∫
Rn
f(x− y)g(y) dy + h ·

∫
Rn
∇f(x− y)g(y) dy + h ·

∫
Rn

∫ 1

0
ε(t, y)g(y) dt dy,
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where ε(t, y) = ∇f(x− y + th)−∇f(x− y). Note that ‖ε‖u ≤ 2‖∇f‖u. Thus,

|ε(t, y)g(y)| ≤ |g(y)|, g ∈ L1((0, 1)× Rn).

So

lim
h→0

∫
Rn

∫ 1

0
ε(t, y)g(y) dt dy =

∫
Rn

∫ 1

0
lim
h→0

ε(t, y)g(y) dt dy = 0.

In other words,

f ∗ g(x+ h) = g ∗ g(x) + h · (∇f ∗ g)(x) + h · γ(x, h), lim
h→0
|γ(x, h)| = 0.

This proves that ∇(f ∗ g)s exists and equals ∇f ∗ g.

13.3 Convolution of functions in the Schwarz space

Proposition 13.2. If f, g ∈ S, then f ∗ g ∈ S.

Proof. By the previous proposition, f, g ∈ C∞. Recall that ‖f‖(N,α) = ‖(1 + |x|)N∂αf‖u
and that these are bounded for all α,N . Note that

(1 + |x|) ≤ 1 + |x− y|+ |y| ≤ (1 + |x− y|)(1 + |y|),

and so

(1 + |x|)N |∂α(f ∗ g(x))| = (1 + |x|)N |(∂αf) ∗ g(x)|

≤
∫
Rn

(1 + |x− y|)N |∂αf(x− y)|(1 + |y|)N |g(y)| dy

=

∫
Rn

(1 + |x− y|)N |∂αf(x− y)|(1 + |y|)N+n+1|g(y)| 1

(1− |y|)n+1
dy

≤
∫
Rn
‖f‖(N,α)‖g‖(N+n+1,0)

1

(1 + |y|)n+1
dy

= |Sn−1|‖f‖(N,α)‖g‖(N+n+1,0)

∫ ∞
0

rn−1

(1 + r)n+1
dr

<∞.

Remark 13.1. If µ be a measure and
∫
Rn f(x − y) dµ(y) makes sense, we denote it as

f ∗ µ.

Example 13.1. Let µ = δa. Then∫
Rn
ϕ(y) dµ(y) = ϕ(a),
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and so
f ∗ δa(x) = f(x− a).

Let g ∈ L1, and set

gt(x) =
1

tn
g(x/t).

Then ∫
Rn
gt(x) dx =

∫
Rn
g(x/t)d(x/t) = a =

∫
Rn
g(y) dy.

We get∫
Rn
ϕ(y) gt(y) , dy =

∫
Rn
ϕ(y)g(y/t) d(y/t) =

∫
Rn
ϕ(tz)g(z) dz

t→0−−→ ϕ(0)

∫
Rn
g(z) dz = ϕ(0)a.

So gt → aδ0.
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14 Limits of Scaled Convolutions

14.1 Limits of scaled convolutions

Recall that if φ ∈ L1(Rn) and

φt(x) =
1

tn
φ
(x
t

)
,

then
‖φt‖1 = ‖φ‖.

Theorem 14.1. Let φ ∈ L1, let f ∈ Lp and let 1 ≤ p ≤ ∞.

1. If p <∞,

lim
t→0
‖φt ∗ f − af‖p = 0, a =

∫
Rn
φ(y) dy.

2. If p =∞ and f is uniformly continuous, then

lim
t→0
‖φt ∗ f − af‖u = 0, a =

∫
Rn
φ(y) dy.

3. If O ⊆ Rn is a bounded open set, K ⊆ O is compact, and f ∈ C(O) ∩ L∞, then

lim
t→0
‖φt ∗ f − f‖C(K) = 0.

Proof. (1) Assume 1 < p <∞, and set q = p/(p− 1). We have

φt ∗ f(x)− af(x) =

∫
Rn

(f(x− y)− f(x))φt(y) dy =
1

tn

∫
Rn

(f(x− y)− f(x))φ
(y
t

)
dy

Making the change of variables, z = y/t, we get

φt ∗ f(x)− af(x) =

∫
RN

(f(x− tz)− f(x))φ(z) dz.

So ∫
Rn
|φt ∗ f(x)− af(x)|p dx =

∫
Rn

∣∣∣∣∫
Rn

(f(x− tz)− f(x))φ(z) dz

∣∣∣∣p dx.
Using Minkowski’s inequality for integrals, we obtain(∫

Rn
|φt ∗ f(x)− af(x)|p dx

)1/p

≤
∫
Rn

(∫
Rn
|f(x− tz)− f(x)|p|φ(z)|p dx

)1/p

dz

≤
∫
Rn
|φ(z)|‖τtzf − f‖p dz
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Note that
‖τtzf − f‖p ≤ 2‖f‖p, lim

t→0
‖τtzf − f‖p = 0.

So ‖φt ∗ f − f‖p ≤
∫
Rn ψ(t, z) dz, where |ψ| ≤ 2‖f‖p|φ| ∈ L1. Using the dominated

convergence theorem, this completes the proof of the first claim. Note that the proof also
works for p = 1.

(2) Assume p =∞, and let f be uniformly continuous. Set

mf (δ) = sup
|x−y|≤δ

|f(x)− f(y)|,

so that
lim
δ→0

mf (δ) = 0.

As we have calculated above,

|φt ∗ f(x)− af(x)| ≤
∫
Rn
mf (t|z|)|φ(z)| dz.

But mf (t|z|)|phi(z)| ≤ 2‖f‖|φ| ∈ L1. We apply the dominated convergence theorem to
obtain that

lim sup
t→0

φt ∗ f − f‖u ≤ lim sup
t→0

∫
Rn
mf (t|z|)|φ(z)| dz = 0.

So we get the second claim.
(3) Let 2d = dist(K,Oc). Choose a compact K1 ⊆ O such that K ⊆ K1 and

dist(K1, O
c) ≥ d. Fix ε > 0. It suffices to show that

lim sup
t→0

‖φt ∗ f − f‖C(K) ≤ ε.

Let R > 0 be large so that ∫
Rn\BR(0)

|φ| dz < ε

2(1 + ‖f‖∞)
.

Fix x ∈ K. by our earlier calculation,

φt ∗ f(x)− af(x) =

∫
BR(0)

(f(x− tz)− f(x))φ(z) dz︸ ︷︷ ︸
I1(t)

+

∫
Rn\BR(0)

(f(x− tz)− f(x)φ(z) dz︸ ︷︷ ︸
I2(t)

.

We have

|I2| ≤ 2‖f‖∞
∫
X\BR(0)

|φ(z)| dz ≤ ε.
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Since K is compact and f ∈ C(K1), f is uniformly continuous on K1, and

lim
δ→0

mK1(δ) = 0, where mK1(δ) = sup
|z−y|≤δ
z,y∈K1

|f(y)− f(z)|.

Since x ∈ K if tR < d, then x, x− tz ∈ K1 if |z| < R. So

|I1| ≤
∫
BR(0)

mK1(tR)|φ(z)| dz = mK1(tR)

∫
BR(0)

|φ(z)|.

Hence, limt→0 I1(t) = 0. So we get

lim sup
t→0

‖φt ∗ f − f‖C(K) ≤ ε.

Remark 14.1. Let φ : Rn → R be a Borel function. Assume c, ε > 0 and

|φ(z)| ≤ C

(1 + |z|)n+ε

for all z. Note that φ ∈ Lp for any p ∈ [1,∞]. Indeed, if 1 ≤ p <∞,

‖φp‖p ≤ cp
∫
Rn

1

(1 + |z|)(n+ε)p
dz = Cp|Sn−1|

∫ ∞
0

rn−1

(1 + r)(n+ε)p
dr

There for, for any q ∈ [1,∞] and any f ∈ Lq, φt ∗ f(x) exists.

Our goal is to show thati f x is a Lebesgue point for f , then

lim
t→0

φt ∗ f(x) = f(x).
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15 Approximation of Lp Functions by Convolutions with Scaled
Mollifiers

Today’s lecture was given by a guest lecturer.

15.1 Approximation of Lp functions by convolutions with scaled molli-
fiers

Theorem 15.1. Suppose |φ(x)| ≤ C(1 + |x|)−n−ε for some C, ε > 0 (so φ ∈ L1(Rd)), and
let
∫
Rd φ(x) dx = a. If f ∈ Lp with 1 ≤ p ≤ ∞, then f ∗φt(x)→ af(x) as t→ 0+ for every

x in the Lebesgue set of f .

Remark 15.1. This implies that f ∗ φt(x)→ af(x) for a.e. x and for every x for which f
is continuous

Proof. If x is in the Lebesgue set of f , for any δ > 0, there exists an η > 0 such that∫
Br

|f(x− y)− f(x)| dy ≤ δrn, ∀r ≤ η.

In other words, limr→0+
1
|Br|

∫
Br
|f(x− y)− f(x)| dy = 0. We have

|f ∗ φt(x)− af(x)| =
∣∣∣∣∫

Rd
f(x− y)φt(y)− f(x)φt(y) dy

∣∣∣∣
=

∫
Rd
|φt(y)||f(x− y)− f(x)| dy

=

∫
By

|φt(y)||f(x− y)− f(x)| dy︸ ︷︷ ︸
I1

+

∫
By

|φt(y)||f(x− y)− f(x)| dy︸ ︷︷ ︸
I2

.

We claim that Ia ≤ Aδ for some A independent of t and that I2 → 0 as t→ 0+. If the
claim holds, then

lim
t→0+

|f ∗ φt(x)− af(x)| ≤ lim
t→0+

I1 ≤ Aδ

Letting δ → 0,
lim
f→0+

f ∗ φt(x) = af(x).

To estimate I1, let K ∈ Z be such that 2K ≤ η/t ≤ 2K+1 if η/t ≥ 1 and K = 0 if
η/t < 1. We view the ball By as the union of B21−kη \B2−kη for k = 1, 2, 3, . . . ,K and the
ball B2−Kη. We have a few cases:

1. On B21−kη \B2−kη for k = 1, . . . ,K,

|φt(y)| = t−nφ(t−1y)| ≤ Ct−n(1 + |t−1y|)−n−ε ≤ Ct−n(1 + |t−12−kη|)−n−ε.
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2. On B2−Kη,

|φt(y)| = t−n|φ(t−1y)| ≤ Ct−n.

So

I1 =

∫
Bη

|φt(y)||f(x− y)− f(x)| dy

=
K∑
k=1

∫
B

21−kη\B2−kη

|φt(y)||f(x− y)− f(x)| dy +

∫
B

2−Kη

|φt(y)||f(x− y)− f(x)| dy

≤
K∑
k=1

(∫
B

21−kη

|f(x− y)− f(x)| dy

)
Ct−n|e−12−kη|−n−ε

+

(∫
B−K2 η

|f(x− y)− f(x)| dy

)
Ct−n

≤

(
K∑
k=1

Ct−n|t−12−kη|−n−εδ(21−kη)n

)
+ Ct−nδ(2−Kη)n

= Cδ

(
t

η

)ε
2n

K∑
k=1

2kε + Cδ

(
2−Kη

t

)n
= Cδ2n

(
t

η

)ε 2(K+1)ε − 2ε

2ε − 1
+ Cδ

(
2−Kη

t

)n
Use the inequality defining K:

≤ Cδ2n2−Kε
2(K+1)ε − 2ε

2ε − 1
+ Cδ2n

= 2nC(2ε(2ε − 1) + 1)︸ ︷︷ ︸
:=A

δ.

To estimate I2, we have, using Hölder’s inequality,

In ≤
∫
Bcη

(|f(x− y)|+ |f(x)|) |φt|(y) ≤ ‖f‖p′‖‖1Bcηφt‖p + |f(x)|‖1Bcηφt‖.

We split into cases:

1. p′ =∞: Then

‖1Bcηφt‖p′ ≤ Ct
−n(1 + t−1η)−n−ε = Ctε(t+ η)−n−ε ≤ Ctεη−n−ε.
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2. 1 ≤ p′ <∞:

‖1Bcηφt‖p′

=

∫
Bη

t−np
′ |φ(t−1y))|p′ dy

= tn(1−p′)
∫
Bc
η/t

|φ(z)|p dz

≤ Ctn(1−p′)
∫
Bc
η/t

[
(1 + |z|)−n−ε

]p′
dz

= Ctn(1−p′)
(η
t

)n−(n−ε)p′

≤ Ctεp′ ,

which goes to 0 as t→ 0+.

Suppose we want to show that C∞c is dense in Lp. Then we let fn = f1Bn , so fn → f
in Lp. The idea is then that fn ∗ φt → f − n as t → 0+, so fn ∗ φt ∈ C∞c approximates f
in Lp.
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16 Smooth Density Results, Smooth Urysohn’s Lemma, and
Characters of Rn

16.1 Density results for C∞c and S

Let φ1 ∈ C∞c (B1(0)) be such that φ1 > 0 on B1(0) and such that∫
Rn
φ1(x) dx = 1.

For example, take

φ(x) :=

{
e1/(‖x‖2−1) |x| < 1

0 |x| ≥ 1
, φ1(x) =

φ(x)∫
φ
.

Lemma 16.1. If 1 ≤ p <∞, then C∞c and S are dense in Lp.

Proof. Let f ∈ Lp, and let ε0 > 0. We are to find g ∈ C∞c such tht ‖f − g‖p < ε0. Choose
g̃ ∈ Cc such that ‖g̃ − f‖p < ε0/2. Set

φε(x) =
1

εn
φ1

(x
ε

)
.

We have φε ∗ g̃ ∈ C∞. Furthermore, supp(φε ∗ g̃) ⊆ supp(g̃) +Bε(0). Hence, φε ∗ g̃ ∈ C∞c .
Choose ε small enough such that

‖φε ∗ g̃ − g̃‖p < ε/2.

So the desired inequality holds for g = φε ∗ g̃. In conclusion, Lp ⊆ C∞c
Lp ⊆ SL

p

⊆ Lp.

Lemma 16.2. C∞c and S are dense in C0(Rn) for the uniform norm.

Proof. Let f ∈ C0. Recall that Cc
L∞

= C0. Hence, given ε0 > 0, there is a g̃ inCc such
that ‖f − g̃‖u ≤ ε/2. Since g̃ is uniformly continuous and bounded,

lim
ε→0
‖g̃ − φε ∗ g̃‖u = 0.

Thus , there is ε > 0 such that

‖g̃ − φε ∗ g̃‖u ≤ ε/2.

So we get
‖f − g‖u ≤ ε.

If we set g = φε ∗ g̃, as before, g ∈ C∞c . In conclusion, C0 ⊆ C∞c
L∞ ⊆ SL

∞
⊆ C0.
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16.2 Smooth Urysohn’s lemma

Lemma 16.3 (Urysohn). Let K ⊆ Rn be a compact nonempty set, and let U ⊆ Rn be
an open set such that K ⊆ U . Then there exists a function f ∈ C∞c such that f |K = 1,
supp(f) ⊆ U , and supp(f) is compact.

This is useful on manifolds. Treat a neighborhood of a point as a subset of Rn. If you
want to integrate a function on the manifold, you can integrate it over every neighborhood.

Proof. Set 3δ = dist(K,U c) > 0. Let K1 = {x ∈ Rn : dist(x,K) ≤ δ}. Note that K1

is compact, and dist(K1, U
c) ≥ δ. Let f = φε ∗ 1K1. Then f ∈ C∞, and supp(f) ⊆

K1 +Bε(0) ⊆ U if ε < δ. So f ∈ C∞c , and f has compact support. If x ∈ K, then

f(x) =

∫
Rn

1K1(x− y)φε(y) dy =

∫
Bε(0)

1K1(x− y)φε(y) dy.

If x ∈ K and |y| ≤ ε, then x− y ∈ K1. So

f(x) =

∫
Bε(0)

φε(y) dy =

∫
Rn
φε(y) dy = 1.

16.3 Characters on (Rn,+)

Proposition 16.1. Let φ : Rn → C be a measurable function such that |φ(x)| = 1 and
φ(x+ y) = φ(x)φ(y) for any x, y ∈ Rn. Then

1. There exists ξ ∈ Rn such that φ(x) = e2πiξ·x.

2. If we further assume that φ is Zn-periodic, then ξ ∈ Zn.

Proof. Let (ej)
n
j=1 the standard orthonormal basis of Rn. If x ∈ Rn, then

φ(x) = φ

 n∑
j=1

xjej

 =
n∏
i=1

φ(xjej).

The function x 7→ φ(x, ej) can be identified with the restriction of φ to a 1-dimensional
space. Therefore, t 7→ φ(tej) satisfies the assumption of the lemma for n = 1. It is not a
loss of generality to assume n = 1.

Set

F (x) =

∫ x

0
φ(t) dt.

There exists a 6= 0 such that F (a) 6= 0 (lest φ ≡ 0). Set A = 1/F (a). We have

φ(a) = φ(x)A

∫ a

0
φ(t) dt = A

∫ a

0
φ(x)φ(t) dt = A

∫ a

0
φ(x+ t) dt = A

∫ x+a

x
φ(z) dz
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= A(F (x+ a)− F (x)).

Since F is continuous, this gives us that φ is continuous. Since φ is continuous, F is
continuously differentiable. Apply the equality above again to conclude that φ ∈ C1.
Differentiating both sides, we obtain

φ′(x) = A(φ(x+ a)− φ(x)) = A(φ(x)φ(a)− φ(x)) = Aφ(x)(φ(a)− 1) = φ(x)B.

So we get
d

dx
ln(φ(x)) =

φ′(x)

φ(x)
= B.

Integrating, we obtain
φ(x) = φ(0)eBx.

But φ(0) = φ(0 + 0) = φ(0)2, and so φ(0) ∈ {0, 1}. Since |φ(0)| = 1, we conclude that
φ(0) = 1. Write B = B1 + iB2 withB1, B2 ∈ R. Then

φ(x) = eB1xeiB2x,

and
1 = |φ(1)| = eB1 =⇒ B1 = 0.

So φ(x) = e2πiξx, whereξ = B2/(2π).
Assume φ is Z-periodic. Then

e2πiξ = φ(1) = φ(0) = 1.

So 2πiξ ∈ 2πZ. That is, ξ ∈ 2πZ.
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17 Orthonormal Basis of L2 and the Fourier Transform

17.1 An orthonormal basis of L2(T)

If ξ ∈ Rn, we define Eξ : Rn → C by Eξ(x) = e2πix·ξ, where x · ξ =
∑n

i=1 xiξi. Let
E = {Ek : k ∈ Zn}.

Proposition 17.1. E separates points in Tn = Rn/Zn: For a, b ∈ Tn, if Ek(a) = Ek(b)
for all k ∈ Zn, then a = b.

Proof. Assume Ek(a) = Ek(b). Then e2πia·k = e2πib·k, so e2πi(b−a)·k = 1. So cos(2π(b −
a) · k) = 1, and sin(2π(b − a) · k) = 0. This means (b − a) · k ∈ Z, and this holds for all
k ∈ Zk. In particular, taking k = (0, . . . , 0, 1, 0, . . . , 0), we conclude that e2πi(bj−aj) = 0
for j = 1, . . . , n. So bj − aj ∈ Z, which means that bj − aj = 0 (since a, b ∈ [0, 1)n and
|aj − bj | < 1).

Theorem 17.1. The collection E is an orthonormal basis of L2(Tn) for the inner product
〈f, g〉 =

∫
Tn f(x)g(x) dx =

∫
[0,1]n f(x)g(x) dx.

Proof. Let k, `,∈ Zn. Then

〈Ek, E`〉 =

∫
[0,1]n

e2πi(k−`)·x dx =

n∏
j=1

∫ 1

0
e2πi(kj−`j)xj dxj =

{
1 k = `

0 k 6= `.

So E is orthonormal.
It remains to show that E spans a dense subset of L2(Tn). Let A = {

∑
k∈Λ λkEk : Λ ⊆

Zn is finite, λk ∈ C}. Since EkE` ∈ E for any k, ` ∈ Zn, one checks that A is an algebra in
C(Tn). Since C = {λE0 : λ ∈ C}, we conclude that A contains the constant functions. By
the Stone-Weierstrass theorem, A is dense in C(Tn) for the uniform norm. If f ∈ L2(Tn)
and ε > 0, there exists g ∈ C(Tn) such that ‖f − g‖2 < ε/2. Choose h ∈ A such that
‖g − h‖u eq ε/2. Then ‖g − h‖2 ≤ ‖g − h‖u, since m(T) = 1. Consequently, ‖f − h‖2 < ε.
This proves that A is dense in L2(T).

17.2 The Fourier transform

Remark 17.1. Let f ∈ L2(Tn). Then

f =
∑
k∈Zn

〈f,Ek〉Ek, ‖f‖22 =
∑
k∈Zn

| 〈f,Ek〉 |2.

Set
f̂k = 〈f,Ek〉 , f̂ = (f̂k)k∈Zn .

We have a map Λ : L2(Tn) → `2(Zn) sending f 7→ f̂ . This is an isometry because this
relation gives ‖f‖2 = ‖f̂‖2 (Parseval’s identity).
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Remark 17.2. Observe that if f ∈ L1(Tn), since Ek ∈ L∞(Tn), we have fEk ∈ L1(Tn),
and so f̂k is still well defined. Note that

|f̂k| =
∣∣∣∣∫

Tn
f(x)e2πik·x dx

∣∣∣∣ ≤ ‖f‖1.
In other words,

‖f̂‖`∞(Zn) ≤ ‖f‖1.

Theorem 17.2. Let 1 < p < 2, and let q = p/(p− 1) be the conjugate exponent. Then the
Fourier transform Λ extends to a linear map Λ : Lp(Rn)→ `q(Zn) such that

‖f̂‖`q(Zn) ≤ ‖f‖Lp(Tn).

Proof. We want to apply the Riesz-Thorin theorem. Set p0 = 2 and p1 = 1, so q0 = 2 and
q1 =∞. Set t = 2/p− 1 ∈ (0, 1), and set

1

pt
:=

t

p0
+

1− t
p0

=
1

p
,

1

qt
:=

t

q0
+

1− t
q0

=
1

q
.

By the Riesz-Thorin interpolation theorem,

‖f̂‖`q(Zn) ≤M t
1M

1−t
0 ‖f‖Lp(Tn) = ‖f‖Lp(Tn),

as M0 = M1 = 1.
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18 Properties of The Fourier Transform

18.1 Properties of the Fourier transform

If f ∈ L2(Tn) and k ∈ Zn, then f̂(k) = 〈f,Ek〉 =
∫ n
R f(x)e−2πik·x dx.

Definition 18.1. The Fourier series are∑
k∈Λ

f̂(k)Ek

for Λ ⊆ Zn.

Definition 18.2. Let f ∈ L1(Rn). As Eξ ∈ L∞(Rn),, f̂(ξ) = 〈f,Eξ〉 =
∫
Rn f(x)e−2πiξ·x dx.

The Fourier transform of f at ξ is

(Ff)(ξ) = f̂(ξ).

Proposition 18.1. Let f, g ∈ L1(Rn), let y, η ∈ Rn and let T : Rn → Rn be an invertible
linear map.

1. f̂ ∗ g = f̂ · ĝ.

2. f̂ ∈ Cb(Rn).

3. τ̂yf = f̂Ey and τη(f̂) = f̂Eη.

4. If S = T−1, then f̂ ◦ T = | det(S)|f̂ ◦ S>.

5. For t > 0, set ft(x) = t−nf(x/t). Then F(ft) = (F(f))t.

Proof. 1. Let ξ ∈ Rn. Then

f̂ ∗ g(ξ) =

∫
Rn
f ∗ g(x)e−2πiξ·x dx

=

∫
Rn
e−2πiξ·x

∫
Rn
f(x− y)g(y) dy dx

We can use Fubini’s theorem because the product of integrable functions in separate
variables is integrable.

=

∫
Rn
g(y)e−2πiξ·y

∫
Rn
f(x− y)e−2πiξ·(x−y) dx dy

Make the change of variables z = x− y:

=

∫
Rn
g(y)e−2πiξ·y

∫
Rn
f(z)e−2πiξ·z dz dy

=

∫
Rn
g(y)e2πiξ·yf̂(ξ) dy

= f̂(ξ)ĝ(ξ).
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2. We have |f̂ | ≤ ‖f‖1. If h ∈ Rn,

f̂(ξ + h) =

∫
Rn
f(x)e2πiξ·xe2πih·x dx,

so

|f̂(ξ + h)− f̂(ξ)| ≤
∫
Rn
|f(x)||e−2πih·x − 1| dx

|f ||e−2πiξ·x − 1| ≤ 2|f | ∈ L2, so we may apply the dominated convergence theorem
to conclude that

lim sup
h→0

|f̂(ξ + h)− f̂(ξ)| ≤
∫
Rn

lim sup
h→0

|e−2πih·x − 1||f(x)| dx = 0.

3. Let ξ ∈ Rn. Then

(f̂)(ξ) = f̂(ξ − η) =

∫
Rn
e−2πi(ξ−η)·xf(x) dx =

∫
Rn
e2πiξ·xEk(x)f(x) dx = Êkf(ξ).

4.

f̂ ◦ T (ξ) =

∫
Rn
f ◦ T (x)e−2πiξ·x dx

Make the change of variables y = Tx, so x = Sy and dx = |det(S)| dy.

=

∫
Rn
f(y)e−2πiξ·Sy|det(S)| dy

Use the fact that a · (Sb) = S>a · b:

=

∫
Rn
f(y)e−2πiS>ξ·y|det(S)| dy

= | det(S)|f̂ ◦ S>(ξ).

5. Set Tx = x/t. so Sy = ty. Define pt(f)(x) = t−nf(x/t) = | det(S)|−1f ◦ T (x). By
the previous part,

Ôt(f) =
1

|det(S)|
f̂ ◦ T =

1

|det(S)|
|det(S)|f̂ ◦ S> = f̂(tξ) = tnO1/t ◦ f̂ .
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19 The Fourier Transform and Derivatives

19.1 How the Fourier transform interacts with derivatives

Theorem 19.1. Let f ∈ L1. Then the following hold.

1. If xαf ∈ L1 for all |α| ≤ k, then

∂αf̂(ξ) = ̂(−2πix)αf(ξ).

2. If f ∈ Ck, ∂αf ∈ L1 ∩ C0 for |α| ≤ k − 1, and ∂αf ∈ L1 for |α| = k, then

∂̂αf(ξ) = (2πiξ)αf̂(ξ).

Proof. For the first statement, we will show the proof of |α| = 1. The rest will follow by
induction on |α|. Let ξ ∈ Rn. Then

f̂(ξ + h) =

∫
Rn
e−2πiξ·xe−2πih·xf(x) dx.

If h = tej , then

f̂(ξ + tej)− f̂(ξ)

t
=

∫
Rn
e2πiξ·x e

−2πitxj − 1

t
dx.

Using a first order Taylor expansion of the exponential, we get |e−2πixjt|/|t| ≤ 2π|xj |. So,
using the dominated convergence theorem, since 2π|xj ||f(x)| ∈ L1,

∂αf̂(ξ) =

∫
Rn
f(x)e2πiξ·x(−2πixj) dx = ̂(−2πix)f(ξ).

For the second statement, we want to understand why we need f ∈ C0 ∩ L1 and
∂xjf ∈ L1 to have ∂̂xjf(ξ) = (2πiξj)f̂(ξ). Assume k = 1. Then

∂̂xjf(ξ) =

∫
Rn
∂xjf(x)e−2πiξ·x dx

=

∫
Rn−1

∫
R
∂xjf(x)e−2πi

∑
k 6=j ξkxke−2πixjξj dxj dx1 · · · dxj−1 dxj · · · dxn

=

∫
Rn−1

e−2πi ˜ξ·x−j
[
−
∫
R
f(x)

∂

∂xj

(
e2πiξjxj

)
+
[
f(x)e−2πixjξj

]∞
−∞

]
d̃x
−j

=

∫
Rn
e2πix·ξf(x)(−2πiξj) dx

− 2πiξj f̂(ξ)
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To prove that f̂ ∈ C0, it suffices to find (gk)k ⊆ C0 such that limk ‖f̂ − gk‖u = 0. Let
(fk)k ⊆ C∞0 (Rn) be such that ‖f − fk‖1 ≤ 1/k. We have

‖f̂ − f̂j‖u ≤ ‖f − fk‖1 ≤
1

k
.

But (2πiξj)f̂k = ∂̂xjfk. Thus,

2π‖ξj f̂k‖u ≤ ‖∂xjfk‖1 <∞.

This means that |ξ||f̂k| is bounded, and so f̂k ∈ C0.

19.2 The Fourier transform on the Schwarz space

Corollary 19.1. F maps S into S continuously.

Proof. Let f ∈ S. We are to control the uniform norm of xa∂bf̂ for all multi-indices
a, b ∈ Nn using a finite number of expressions ‖f‖(Ni,αi). Since xa∂bf̂ is a finite linear

combination of terms of the form ∂β(xαf̂), it suffices to control the latter expressions.
Note that

∂β(xαf̂) =
∂β
(

(2πix)αf̂
)

(2πi)α
=
∂β(∂̂αf)

(2πi)α
=

1

(2πi)α
̂(−2πix)β∂αf.

Thus,
‖∂β(xαf̂)‖u ≤ |2π|β−α‖xβ∂αf‖1.

The right hand side is

|2π|β−α
∫
Rn

1

(1 + |x|)n+1
(1 + |x|)n+1|xβ∂αf | dx

≤ |2π|β−α‖(1 + |x|)n+1+|β|∂αf‖u
∫
Rn

∫
Rn

1

1 + |x|)n+1
dx

= |2π|β−α‖f‖(2+1+|β|,α)Cn,

where Cn is a constant.

Remark 19.1. Given a > 0 and an integer n ≥ 1, we define

fna (x) = e−π|x|
2a.

Note that fna ∈ S, and

fna (x) =
n∏
j=1

f1
a (xj).
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Hence,

f̂na (ξ) =

∫
Rn
e−2πiξ·x

n∏
j=1

f1
a (xj) dx

=
n∏
j=1

∫
Rn
e2πiξjxjf1

a (xj) dxj

=

n∏
j=1

f̂1
a (ξj).
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20 Fourier Inversion

20.1 Fourier transform of exponentials

For a > 0, recall that

fna (x) = e−πa|x|
2

=

n∏
j=1

f1
a (xj).

Additionally, ∫
R

e−|xj−u|
2/2θ

√
2πθ

dxj = 1 =⇒
∫
Rn

e−|x−u|
2/2θ

√
2πθ

dx = 1.

Lemma 20.1. We have

f̂na =
1√
a
n f

n
1/a.

Proof. Note that

f̂na (ξ) =

∫
Rn
e−2πiξ·xfna (x) dx =

n∏
j=1

∫
R
e−2πiξjxjf1

a (xj) dxj

=
n∏
j=1

f̂1
a (ξj).

So it suffices to show the lemma for n = 1. Assume n = 1.
We want to show that

e(π/a)ξ2 f̂1
a (ξ) = 1.

We claim that for f = f1
a ,

d

dξ

(
f̂(ξ)e(π/a)ξ2

)
= 0.

We have

d

dξ
f̂ = −̂2πixf =

i

a
̂2πxae−πa|x|2 =

i

a

̂d
dx

(e−πa|x|2) = − i
a

d̂f

dx
= − i

a
(−2πiξ)f̂ = −2π

a
ξf̂(ξ).

Hence,

d

dξ
(f̂(ξ)e(π/a)ξ2) =

d

dξ
f̂(ξ)e(π/a)ξ2 + f̂(ξ)

2π

a
ξe−πaξ

2

= ξ
2π

a
f̂(ξ)

[
−e(π/a)ξ2 + e(π/a)ξ2

]
= 0.

Consequently,

e(π/a)ξ2 f̂1
a (ξ) = f̂(0) =

∫
R
f(x) dx =

∫
R
e−πx

2a dx =
1√
a
.
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20.2 Self-adjoint property of the Fourier transform

Lemma 20.2. Let f, g ∈ L1. Then∫
Rn
f̂g dξ =

∫
Rn
fĝ dx.

Proof. We have ∫
Rn
f(x)ĝ(x) dx =

∫
Rn
f(x)

∫
Rn
e−2πiξ·xg(ξ) dξ dx

=

∫
Rn×Rn

f(x)g(ξ)e−2πiξ·x dx dξ

=

∫
Rn×Rn

f(ξ)g(x)e−2πiξ·x dx dξ

=

∫
Rn
f̂(ξ)g(ξ) dξ.

20.3 The Fourier inversion formula

Definition 20.1. Let F ∈ L1. We define

F∨ = F̂ (−ξ) =

∫
Rn
e2πiξ·xF (x) dx.

Theorem 20.1. Suppose F, F̂ ∈ L1. There exists G ∈ C0 such that F = G a.e. and
(F∨)∧ = (F̂ )∨ = G.

Proof. For each x ∈ Rn and t > 0, define

φxt (ξ) = e2πiξ·x−π|ξ|2t = Ex(ξ)fnt (ξ).

Note that

φ̂xt (y) = 〈Exfnt , Ey〉 = 〈fnt , Ey−x〉 = f̂t(y − x) =
1√
t
n f

n
1/t(y − x) =

1√
t
n f

n
1/t(x− y).

by the lemma. But setting t = 2πθ gives∫
Rn
fn1/t(z)

1√
t
n dz = 1.

In conclusion, φxt , φ̂
x
t ∈ L1. By the previous lemma,∫

Rn
φ̂xt F (ξ) dξ =

∫
Rn
φxt (y)F̂ (y) dξ.
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Using the expression of φ̂xt , we obtain∫
Rn

1√
t
n f

n
1/t(x− ξ)F (ξ) dξ =

∫
Rn
F̂ (y)e2πiy·x−π|y|2t dy.

Hence

lim
t→0

ρt ∗ F = lim
t→0

∫
Rn
F̂ (y)e2πiy·x−π|y|2t dy, where ρt(z) =

1√
t
n f

n
1/t(z).

By the dominated convergence theorem,

lim
t→0

ρt ∗ F =

∫
Rn
F̂ (y)e2πiy·x dx = (F̂ )∨(−x),

and F = limt→0 ρt ∗ F a.e., as

ρt(z) =
1√
t
n e
−π|z/

√
t|2 =

1√
t
n ρ1(z/

√
t).

So we have proven that

F (x) = (F̂ )∧(−x) = (F̂ )∨(x) a.e.

We have shown that (F̂ )∧ = (F ◦O), where O(z) = −z. Now F∨ = F̂ ◦ 0, so (F∨)∧ =
(F̂ ◦O)∧.
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21 Isomorphism, Unitary Property of the Fourier Trans-
form, and Periodic Functions

21.1 The Fourier transform on the Schwarz space

If f, f̂ ∈ L1, then f
a.e.
= (f∨)∧, where, f∨ = f̂ ◦O, and O(x) = −x.

Corollary 21.1. If f ∈ L1 and f̂ = 0, then f ≡ 0 a.e.

Proof. We have f, f̂ ∈ L1, and so

f ≡ (f∨)∧ = (f̂ ◦ 0)∧ = 0∧ = 0.

Corollary 21.2. F : S → S is an isomorphism.

Proof. By the previous corollary, the kernel of F|S is {0}. Since F is linear, we conclude
that F|S is one-to-one. We want to show that F|S is onto. Let g ∈ S. Since ĝ ∈ S ,

we have ĝ, g ∈ S, and so g = ̂̂g ◦O = F(ĝ ◦ O). Since ĝ ∼= O ∈ S, we have proven
that F−1(g) = ĝ ◦ O. That is, F−1 = F ◦ O. Since F maps S continuous to S, so does
F ◦O = F−1.

21.2 Unitary property of the Fourier transform

Theorem 21.1. The Fourier transform has the following properties:

1. F maps L1 ∩ L2 into L2.

2. F extends to a unitary transformation F̃ : L2 → L2.

Proof. Set A = {f ∈ L1 : f̂ ∈ L1}. We claim that A ⊆ L2. Let f ∈ A. Then f = (f∨)∧

a.e. This is in L∞, as f̂ ∈ L1. Since 1
2 = 1/2

1 + 1/2
∞ , we conclude that

‖f‖2 ≤ ‖f‖1/2∞ ‖f‖
1/2
1 .

Observe that L2 = SL
2

⊆ AL
2

⊆ L2. So A is dense in L2.
Isometry: Let f, g ∈ A. We have∫

Rn
fg =

∫
Rn
f(g∨)∧ =

∫
Rd
f̂g∨ =

∫
f̂ ĝ.

In particular, ∫
Rn
|f |2 dx =

∫
Rn
|f̂ |2 dξ.

Extension: Since A is dense in L2, this gives us that f extends to a linear operator
F̃ : L2 → L2 such that ‖F̃‖2 = ‖f‖2.
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It remains to check that F̃ = F(f) for f ∈ L1 ∩ L2. Set

ρ(x) = e−π|x|
2
, ρr(x) =

1

tn
ρ(x/t).

Let f ∈ L1 ∩ L2. We have ρt ∗ f ∈ L1 ∩ L2, and

ρ̂t ∗ f = ρ̂tf̂ = e2πi|ξ|2︸ ︷︷ ︸
∈L1

f(ξ)︸︷︷︸
∈ L∞

.

So ρ̂t ∗ f ∈ L1. This means that ρt ∗ f ∈ A. We have that

‖F(ρt ∗ f)−F(f)‖2 = ‖F̃(ρt ∗ f)− F̃(f)‖2 = ‖ρt ∗ f − f‖2,

‖F(ρt ∗ f)− F̃(f)‖∞ ≤ ‖ρr ∗ f − f‖1.

Let B ⊆ Rn be a bounded ball. We have

‖F̃(f)−F(f)‖2 ≤ ‖F̃(f)−F(ρt∗F)‖2+‖F(ρt∗f)−F(f)‖L2(B) ≤ ‖F̃(f)−F(ρt∗F)‖2+‖F(ρt∗f)−F(f)‖∞|B|

So we conclude that F̃(f) = F(f) a.e. on B.

Corollary 21.3. For 1 ≤ p ≤ 2 and q = p/(p−1), we obtain an extension to F : Lp → Lq

such that ‖F(f)‖q ≤ ‖f‖p.

21.3 Producing periodic functions from L1 functions

Theorem 21.2. Let f ∈ L1.

1. There exists a periodic Pf : Rn → R such that ‖Pf‖1 ≤ ‖f‖1.

2. P̂ f
Tn

(`) = f̂R
n
(`).

3. Pf(x) =
∑

k∈Zn τkf(x).

Proof. Let Q = [−1/2, 1/2)n. Set Fm(x) =
∑
|k|≤m,k∈Zn f(x − k). By the monotone

convergence theorem,∫
Q

∑
k∈Zn

|f(x− k)| dx =
∑
k∈Zn

∫
Q
|f(x− k)| dx =

∑
k∈Zn

∫
Q+k
|f(x)| dz =

∫
Rn
|f(z)| dz.

This proves that the series (Fm(x))m converges absolutely for a.e. x ∈ Q. So (Fm(x))m
converges for a.e. x ∈ Q to a value Pf(x). We have that Pf is periodic. We also get that

‖Pf‖L1(Q) ≤ ‖f‖1.
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This completes the proofs of the first and third statements.
If ` ∈ Zn, then

P̂ f
Tn

(`) =

∫
Q
Pf(x)e−2πi`·x dx

=

∫
Q

∑
Q

∑
k∈Zn

f(x− k)e−2πi`·x dx

Let z = x− k.

=
∑
k∈Zn

∫
Q+k

f(z)e−2πi`·ze−2πik·` dz

=

∫
Rn
f(z)e2πi`·z dz = f̂(`).
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22 The Poisson Summation Formula and Integrability of the
Fourier Transform

This lecture was given by a guest lecturer.

22.1 The Poisson summation formula

Recall that if Ek(x) =2πik·x, then {Ek : k ∈ Zn} is an orthonormal basis of L2(Tn). We
have also shown the following:

Theorem 22.1. If f ∈ L1(Rn), then the series
∑

k∈ZN τkf converges pointwise a.e. and

in L1(Tn) to a function Pf such that ‖Pf‖1 ≤ ‖f‖1. Moreover, P̂ f(k) = f̂(k).

We have also shown the following theorem in the Rn case, but here is the form of the
theorem in the Tn case.

Theorem 22.2 (Hausdorff-Young inequality). Suppose that 1 ≤ p ≤ 2 and q is the the
conjugate exponent of p. If f ∈ Lp(Tn), then f̂ ∈ `q(Zn), and ‖f̂‖`q(Zn) ≤ ‖f‖Lp(Tn).

Theorem 22.3 (Poisson summation formula). Suppose that f ∈ C(Rn) satisfies |f(x)| ≤
C/(1 + |x|)n+ε and |f̂(ξ)| ≤ C/(1 + |ξ|)n+ε for some C, ε > 0. Then∑

k∈Z
f(x+ k) =

∑
k∈Zn

f̂(k)e2πil·x,

where both series converge absolutely and uniformly on Tn. In particular,∑
k∈Zn

f(k) =
∑
k∈Zn

f̂(k).

Proof. Since |f(x)| ≤ C/(1 + |x|)n+ε, for all x ∈ Tn,

|f(x+ k)| ≤ C

(1 + |x+ k|)n+ε
≤ C ′

(1 + |k|)n+ε
.

Then compare ∑
k∈Z

C

(1 + |k|)n+ε
∼
∫
Rn

1

(1 + |x|)n+ε
dx.

This implies that ∑
k∈Zn

f(x+ k)
C(Tn)

= Pf(x)

for all x ∈ Tn.
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By the previous theorem, we have Pf ∈ L1(Tn) and P̂ f(k) = f̂(k). Then Pf ∈ L2(Tn),
and since {Ek : k ∈ Zn} is an orthonormal basis of L2(Tn), we have

Pf
L2(Tn)

=
∑
k∈Zn

P̂ fe2πik·x =
∑
k∈Zn

f̂(k)e2πik·x.

By the decay of f̂ , Pf(x)
C(Tn)

=
∑

k∈Zn f̂(k)e2πik·x.

22.2 Integrability of the Fourier transform

The Fourier inversion theorem shows how to use f̂ to represent f is f, f̂ ∈ L1(Rn). In Tn,
if f ∈ L1(Tn) and f̂ ∈ `1(Zn), then the Fourier series∑

k∈Zn
f̂(k)e2πik·x

converges absolutely and uniformly to a function g. Since `1 ⊆ `2, it follows that f ∈ L2

and the serires converges to f in L2. Hence, f = g a.e. We have 2 questions:

1. Under what conditions is f̂ integrable?

2. How can f be recovered from f̂ if f̂ is not integrable?

Theorem 22.4. Suppose that f is periodic and absolutely continuous on R, and f ′ ∈ Lp(T)
for some p > 1. Then f̂ ∈ `1(Z).

Proof. By integration by parts, f̂ ′(k) = 2πikf̂(k). Hence, by Hölder’s inequality,

∑
k 6=0

|f̂(k)| ≤

(∑
k

(2π|k|)−p
)1/p

︸ ︷︷ ︸
=:Cp

∑
k 6=0

(2π|kf̂(k)|q)1/q



= Cp

∑
k 6=0

|f̂ ′(k)|q
1/p

≤ Cp‖f̂ ′‖`q(Z).

Since Lp(T) ⊆ L2(T) for p > 2, we can assume that 1 < p ≤ 2. By the Hausdorff-Young
inequality, ∑

k 6=0

|f̂(k)| ≤ Cp‖f ′‖Lp(T).

Adding |f̂(0)| to both sides, we see that

‖f̂‖`1(Z) <∞.
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Lemma 22.1. If f, g ∈ L2(Rn), then (f̂ ĝ)∨ = f ∗ g.

Proof. By assumption, we know that f̂ , ĝ ∈ L2(Rn). Then f̂ ĝ ∈ L1(Rn). So (f̂ ĝ)∨ makes
sense. So for x ∈ Rn, define h(y) = g(x− y). Then ĥ(ξ) = ĝ(ξ)e−2πiξ·x. Then

f ∗ g(x) =

∫
Rn
fh =

∫
f̂ ĥ =

∫
f̂(ξ)ĝ(ξe2πiξ·x dξ = (f̂ ĝ)∨.
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23 Recovering Functions From Their Fourier Series

This lecture was given by a guest lecturer.

23.1 Recovering functions from their Fourier series

Theorem 23.1. Suppose that Φ ∈ C(Rn) satisfies |Φ(ξ)| ≤ C(1 + |ξ|)−n−ε, |Φ∨(x)| ≤
C(1 + |x|)−n−ε, and Φ(0) = 1. Given f ∈ L1(Tn), for any t > 0, set

f t(x) =
∑
k∈Zn

f̂(k)Φ(tz)e2πik·x.

1. If f ∈ Lp(Tn), then ‖f t − f‖p → 0 as t → 0. If f ∈ C(Tn), then f t → f uniformly
as t→ 0.

2. f t(x)→ f(x) for every x in the Lebesgue set of f .

Proof. First, let φ = Φ∨, and let φt(x) = t−nφ(t−1x). Then φ̂t(ξ) = Φ(tξ). Since |Φ(ξ)| ≤
C(1 + |ξ|)−n−ε, we have Φ ∈ L1(Rn). So φ ∈ C(Rn). And, moreover,

φt(x) = t−nφ(t−1x) ≤ Ct−n(1 + |t−1x|)−n−ε ≤ Ct−n(1 + |x|)−n−ε,

where the last inequality holds for t� 1. Also,

φ̂t(ξ) = Φ(tξ) ≤ C(1 + t|ξ|)−n−ε
0<t<1
≤ C(t+ t|ξ|)−n−ε = Ct−n−ε(1 + |ξ|)−n−ε.

Applying the Poisson summation formula for each fixed t, we get∑
k∈Zn

ϕt(x− k) =
∑
k∈Zn

φ̂t(k)e2πik·x =
∑
k∈Zn

Φ(tk)e2πik·x =: ψt(x) ∈ L2(Tn) ⊆ L1(Tn).

Then f̂ ∗ ψt(k) = f̂(k)ψ̂t(k), as f, ψt ∈ L1 for each t. As ψt ∈ L2, we have that
ψt(x) =

∑
k∈Zn ψ̂te

2πk·x, which means that ψ̂t(k) = Φ(tk) (since the Fourier series co-
efficients agree). So

f̂ ∗ ψt(k) = f̂(k)Φ(tk) = f̂ t(k).

So we get f t = f ∗ ψt by taking the inverse Fourier transform. Hence, for all 1 ≤ p ≤ ∞,
by Young’s inequality (and a theorem we have already proven),

‖f t‖p = ‖f ∗ ψt‖p ≤ ‖f‖p‖ψt‖1 ≤ ‖f‖p‖φt‖1 = ‖f‖p‖φ‖1.

So the operator f → f t is uniformly bounded in Lp for 1 ≤ p ≤ ∞.
Notice that Φ is continuous and Φ(0) = 1. We have f t → f uniformly if f is a

trigonometric polynomial, i.e. f̂(k) = 0 for all but finitely many k: f =
∑m

j=1 f̂(kj)e
2πikj ·x.

By the Stone-Weierstrass theorem, the trigonometric polynomials are dense in C(Tn) and
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hence also dense in Lp(Tn). So for all ε > 0, there exists a trigonometric polynomial fn
such that ‖f − fn‖p ≤ ε. Then

‖f t − f‖p ≤ ‖f t − f tn‖+ ‖f tn − fn‖p + ‖fn − f‖p
≤ ‖φ‖1‖f − fn‖p + ‖f tn − fn‖p + ‖fn − f‖p
≤ (‖φ‖1 + 1)ε.

This proves the first statement.
For the second statement, without loss of generality, assume that 0 is a Lebesgue point

of f . With Q = [−1/2, 1/2)n, we have

f t(0) = f ∗ ψt(0) =

∫
Q
f(x)ψt(−x) dx =

∫
Q
f(x)φt(−x) dx+

∑
k 6=0

∫
Q
f(x)φt(−xk) dx

Since
|φt(x)| ≤ Ct−n(1 + t−1|x|)−n−ε = Ctε(t+ |x|)−n−ε ≤ Ctε|x|−n+ε,

we have

|φt(x+ k)| ≤ Ctε| − x+ k|−n−ε ≤ Ctε
∣∣∣∣k2
∣∣∣∣−n−ε = C2n+εtε|k|−n−ε

for k 6= 0. So we get

∑
k 6=0

∣∣∣∣∫ f(x)φt(−x+ k)

∣∣∣∣ ≤
C2n+ε‖f‖1

∑
k 6=0

|k|−n−ε
 tε t→0−−→ 0.

On the other hand, if we define g = f1Q ∈ L1(Rn),

lim
t→0

∫
Q
f(x)φt(−x) dx = lim

t→0
g ∗ φt(0) = g(0) = f(0).

So we get that f t(0)→ f(0).
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24 Distributions and Smooth Urysohn’s Lemma

24.1 Distributions

Throughout this section, U ⊆ Rn is an open set.

Definition 24.1. If E ⊆ Rn, C∞c (E) is the set of φ ∈ C∞c (Rn) such that supp(φ) ⊆ E.

We endow C∞c (U) with the following topology: (φj)j∈N ⊆ C∞c (U) converges to φ ∈
C∞c (U) if there exists a compact K ⊆ U such that

• supp(φj) ⊆ K for all j,

• ∂αφj → ∂αφ uniformly on K for all α ∈ Nn.

Definition 24.2. Let X be a locally convex topological vector space. A linear operator
T : C∞c (U)→ X is continuous if for each compact K ⊆ U , T |C∞c (K) is continuous.

Definition 24.3. Let U ′ be an open subset of Rn. A linear operator T : C∞c (U)→ C∞c (U ′)
is continuous if for each compact K ⊆ U , there exists a compact K ′ ⊆ U ′ such that
T (C∞c (K)) ⊆ C∞c (K ′), and T : C∞c (K)→ C∞c (K ′) is continuous.

Definition 24.4. If T : C∞c (U) → R is linear and continuous, we say that T is a distri-
bution on U and write T ∈ D′(U).2

Definition 24.5. If V ⊆ U and T, S ∈ D′(U), we say that T = S on V if T (φ) = S(φ) for
all φ ∈ C∞c (V ).

Definition 24.6. A sequence (Tj)j∈N ⊆ D′(U) converges to T ∈ D′ if limj→∞ Tj(φ) =
T (φ) for all φ ∈ C∞c (U).

That is, D′(U) is endowed with the weak* topology.

Example 24.1. Let f ∈ L1
loc(U). Define

T (φ) =

∫
U
fφ dx, φ ∈ C∞c (U).

This is a distribution.

Example 24.2. Let µ be a Radon measure on U . Define

T (φ) =

∫
U
φ(x) dµ(x).

For example, let x0 ∈ U , and µ = aδx0 . Set

T (φ) = aφ(x0) =

∫
U
φ(x) dµ(x).

This is a distribution.
2This notation is because some people call D := C∞c (U) and denote the dual by ′.
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Notation: If φ : Rn → R, set φ̃(x) = φ(−x).

Proposition 24.1. Let f ∈ L1(Rn). For each t > 0, set ft(x) = t−nφ(x/t) for x ∈ Rn.
Assume that

∫
Rn f(x) dx = 1. Define

Tt(φ) =

∫
Rn
ft(x)φ(x) dx.

Then Tt → δ0 in D′(Rn); that is, Tt → T0, where T0 = δ0.

Remark 24.1. Often, people will view ft as its distribution Tt and call the distribution
ft.

Proof. Let φ ∈ C∞c (Rn). Observe that

Tt(φ) =

∫
Rn
ft(x)φ̃(0− x) dx = ft ∗ φ(0).

So we have
lim
t→0

Tt(φ) = lim
t→0

ft ∗ φ̃(0) = φ̃(0) = φ(0).

24.2 Smooth Uryson’s Lemma

Proposition 24.2 (extension of Urysohn’s lemma). Let K ⊆ Rn be compact, and let
U ⊆ Rn be an open set containing K. Then there exists φ ∈ C∞c (Rn, [0, 1]) such that
φ|K = 1 and supp(φ) ⊆ U .

Remark 24.2. Urysohn’s lemma is the case where we do not assume that φ is smooth.

Proof. Let ρ ∈ C∞c (Rn) be such that ρ ≥ 0, supp(ρ) ⊆ B1(0) and
∫
Rn ρ(x) dx = 1. Set

ρt(x) = t−nρ(x/t) for t > 0 and x ∈ Rn. By Urysohn’s lemma, there is a g ∈ Cc(Rn, [0, 1])
such that g|Kε = 1, supp(g) ⊆ Uε, where Kε = {x ∈ Rn : dist(x,K) ≤ ε} and Uε = {x ∈
U : dist(x, U c) > ε}. As K is compact, let δ = dist(K,U c) > 0. If 0 < ε < δ¡ then K ⊆ Uε,
Kε is compact, and Uε is open. Let φ = ρδ/4 ∗ g, and let ε = δ/4. Since ρδ/4 ∈ C∞(Rn),
we have φ ∈ C∞(U). Note that

φ(x) =

∫
Rn
ρ(y/ε)

1

εn
g(x− y) dy =

∫
Bε(0)

ρε(x)g(x− y) dy.

If x ∈ K and |y| < ε¡ the x− y ∈ Kε, and so g(x− y) = 1. Hence,

φ(x) =

∫
Bε(0)

ρε(x) dx = 1.

If x /∈ U ε, then g(x− y) = 0 if |y| < ε. Hence, φ(x) = 0.
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25 Extensions and Transformations of Distributions

25.1 Extension of distributions

Let U ⊆ Rn be open. If V ⊆ U is open and T, S ∈ D′(U), we say that T = S on V
if T |C∞c (V ) = S|C∞c (V ). Assume V1, V2 ⊆ U are open and T, S ∈ D′(U) are such that
T |C∞c (V1) = S|C∞c (V1) and T |C∞c (V2) = S|C∞c (V2).We want to show that T |C∞c (V1∪V2) =
S|C∞c (V1∪V2).

Here is a wrong proof: Let φ ∈ C∞c (V ), and assume that V1 ∩ V2 = ∅. Then

T (ϕ) = T (1V1φ+ 1V2φ) = T (1V1φ) + T (1V2φ) = S(1V1φ) + S(1V2φ) = S(ϕ).

This is not a correct proof because 1V1φ need not be in C∞c .

Theorem 25.1. Let (Vα)α∈I be open subsets of U and let V =
⋃
α∈I Vα. Let T, S ∈ D′(V )

be such that T |C∞c (Vα) = S|C∞c (Vα) for all α ∈ I. Then T |C∞c (V ) = S|C∞c (V ).

Proof. Let φ ∈ C∞c (V ). We are to show that T (φ) = S(φ). Set K = supp(φ) ⊆ V =⋃
α∈I Vα. Since K is compact, there are α1, . . . , αm ∈ I such that K ⊆

⋃m
j=1 Vαj . For each

x ∈ K, there exist r(x) > 0 and j ∈ {1, . . . ,m} such that B2r(x)(x) ⊆ Vαj . Note that

K ⊆
⋃
x∈K Br(x)(x), and so there exists x1, . . . , x` ∈ K such that K ⊆

⋃`
i=1Br(xi)(xi).

For each j ∈ {1, . . . ,m}, set Ij = {i ∈ {1, . . . , `} : B2r(xi)(xi) ⊆ Vαj . Note that the set

Kj :=
⋃
i∈Ij Br(xi)(xi) is compact, and Kj ⊆ Vαj . By the extended Urysohn’s lemma, there

exists fj ∈ C∞c (Rn, [0, 1]) such that fj |Kj ≡ 1 and supp(fj) ⊆ Vαj . Set E = {
∑m

j=1 fj > 0}.
On K,

∑m
j=1 fj ≥ 1, and so K ⊆ E . We apply the extended Urysohn’s lemma once more

to obtain f ∈ C∞c (Rn) such that f |K ≡ 1 and supp(f) ⊆ E . Set fm+1 = 1 − f . Now
f1 + · · ·+ fm+1 is always strictly positive because f1 + · · ·+ fm > 0 on E and 1 outside E .

We can hence define

hj =
fj∑m+1
i=1 fi

∈ C∞c (Rn, [0, 1])

for each 1 ≤ j ≤ m. Note that supp(hj) ⊆ Vαj and that (
∑m

j=1 hj)|K ≡ 1. Thus,
φ = φ

∑m
j=1 hj , so

T (φ) = T

φ m∑
j=1

hj

 =
m∑
j=1

T (φhj) =
m∑
j=1

S(φhj) = S

φ m∑
j=1

hj

 = S(φ).

25.2 Transformations of distirbutions

Definition 25.1. Let T ∈ D′(U). If α ∈ Nn is a multi-index, define ∂αT : C∞c (U)→ R as

(∂α)T (φ) = (−1)|α|T (∂αφ).

70



Definition 25.2. If ψ ∈ C∞(U) and T ∈ D′(U), define ψT : C∞c (U)→ R as

(ψT )(φ) = T (ψφ), φ ∈ C∞c (U).

Definition 25.3. If y ∈ Rn, we define τy(T ) : C∞c (U − y)→ R as

τy(T )(φ) = T (τ−yφ), φ ∈ C∞c (U).

Definition 25.4. Let S : RN → Rn be a linear bijection, and set V = S−1(U). We define
T ◦ S : C∞c (V )→ R as

T ◦ S(φ) =
1

| det(S)|
T (φ ◦ S−1), φ ∈ C∞c (V ).

Theorem 25.2. Let T, S, ψ, y, α be as above. Then

1. ∂αT, ψT ∈ D′(U)

2. τy(T ) ∈ D′(U − y)

3. T ◦ S ∈ D′(V ).

Proof. For the second statement, the idea is that τy is an isometry of C∞c (U)→ C∞c (U−y).
For the third statement, the idea is that | det(S)|−1φ◦S−1 is an isomorphism of C∞c (V )

into C∞c (U).
For the first statement, let’s take something weaker, say g ∈ Lp(U). Then ∂xig exists

as a distribution. Can we represent ∂xig as an Lp function? If we can, say g ∈ W 1,p(U).
Similarly, if ∂2

xI ,xj
g ∈ Lp(U), then say that g ∈W 2,p.

We will continue this next time. This will involve Sobolev spaces.
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26 Introduction to Sobolev Spaces

26.1 Sobolev spaces and uniqueness of distributional derivatives

Throughout this section, Ω ⊆ Rd is a nonempty, open set.

Proposition 26.1. Let f ∈ L1
loc(Ω) be such that

∫
Ω fφ dx = 0 for all φ ∈ C∞c (Ω). Then

f ≡ 0 a.e.

Proof. Let ρ ∈ C∞c (Rd) be such that ρ ≥ 0,
∫
Rd ρ dx = 1, and supp(ρ) = B1(0). Set

ρε(x) = ε−dρ(x/ε). Let x ∈ U , and let 0ε0 < dist(x, ∂Ω). Then

ρε ∗ f(x) =

∫
Bε(x)

ρε(x− y)f(y) dy = 0, 0 < ε < ε0.

Thus, for almost every x,
0 = f(x) = lim

ε→0
ρε ∗ f(x).

Definition 26.1. Let 1 ≤ p ≤ ∞, and let m ∈ N. We say that f ∈W p,m
loc (Ω) if f ∈ Lploc(Ω)

and if for every multi-index α ∈ Nn such that |α| ≤ m, there exists gα ∈ Lploc(Ω) such that∫
Ω
f∂αφdx = (−1)|α|

∫
Ω
gαφdx ∀φ ∈ C∞c (Ω).

In other words, the distributional derivative ∂αf ∈ Lploc. When f ∈ Lp(Ω) and gα ∈ Lp(Ω)
for |α| ≤ m, we write f ∈Wm,p(Ω).

Remark 26.1. Thanks to the previous proposition, when gα exists, it is uniquely deter-
mined a.e.

26.2 Translation of distributions

Notation: Let φ ∈ C∞c (Ω), and let y ∈ Rd. We set φy(x) = φ(x− y) = (τyφ)(x). Note that
supp(ϕy) = supp(φ) + y. Set

Oφ = {y ∈ Rd : y + supp(φ) ⊆ Ω} = {y ∈ Rd : supp(φy) ⊆ Ω}.

Proposition 26.2. Oφ is open and nonempty.

Proof. Let y ∈ Oφ, and set δ = dist(y + supp(φ),Ωc) > 0. If y ∈ Oφ, then Bδ/2(y) ⊆ Oφ.
Hence, Oφ is open. Oφ 6= ∅ because 0 ∈ Oφ.

Proposition 26.3. If T ∈ D′(Ω), y 7→ T (φy) is continuous.
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Proof. Let (yn)n ⊆ Oφ be a sequence converging to y. We are to show that limn T (φyn) =
T (φy). Note that

φyn(x) = φ(x− yn) = φ(x− y)−
∫ 1

0
∇φ(x− y + t(yn − y)) · (yn − y) dt.

This gives us that (φyn)n converges to φy in C∞c . Indeed,

|∂αφy−N − ∂αφy| ≤ ‖∇∂αφ‖∞‖yn − y‖.

Since T is continuous, we conclude that

lim
n
T (φyn) = T (φy).

Theorem 26.1. Let φ ∈ C∞c (Ω), and let T ∈ D′(Ω). Set f(y) = T (φy) for y ∈ Oφ.

1. f ∈ C∞(Oφ), and

Dαf(y) = (−1)|α|T ((Dαφ)y).

2. If ψ ∈ L1(Oφ) has compact support, then

T (ψ ∗ φ) =

∫
Oφ

ψ(y)f(y) dy.

Proof. One proves by induction on α that ∂αf exists, is continuous, and satisfies the
equation. Assume |α| = 1. Let e1, . . . , ed be the standard basis of Rn. We have for t ∈ R

φy+tei(x) = φ(x− y − tei) = φ(x− y)−
∫ 1

0
∂iφ(x− y − tτei) dτ.

Hence,
φy+tei(x)− φy(x)

t
= −

∫ 1

0
∂iφ(x− y − tτei) dτ.

In fact, we have

∂αφy+tei(x)− ∂αφy(x)

t
= −

∫ 1

0
[∂α∂iφ(x− y − tτei)− ∂α∂iφ(x− y)] dτ − ∂α∂iφ(x− y).

This shows that
φy + teu − φy

t
(x)→ −∂iφ(x− y)

pointwise and in C∞c (Ω). Hence,

lim
t→0

f(y + tei)− f(y)

t
= lim

t→0

T (φy + tei)− T (φy)

t
= lim

t→∞
T

(
φy+tei − φy

t

)
= T (−(∂φ(x))y).

Since ∂iφ ∈ C∞c (Ω), by the previous proposition, y → T ((∂iφ)y) is continuous. In conlcu-
sion, f is continuously differentiable, and ∇d(y) = −T ((∇φ)y). This concludes the proof
of the first statement when |α| = 1. By induction, we obtain the result for all α.

We will prove the second statement next time.
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27 Applying Distributions to Convolutions

27.1 Uniform estimates of functions on bounded sets

Last time, we proved the first half this theorem:

Theorem 27.1. Let φ ∈ C∞c (Ω), and let T ∈ D′(Ω). Set f(y) = T (φy) for y ∈ Oφ.

1. f ∈ C∞(Oφ), and

Dαf(y) = (−1)|α|T ((Dαφ)y).

2. If ψ ∈ L1(Oφ) has compact support, then

T (ψ ∗ φ) =

∫
Oφ

ψ(y)f(y) dy.

To prove the second half, we first make some remarks.

Remark 27.1. Fix R > 0, and set Q = [−R,R]d. There are a : (0,∞) → (0,∞) and
m : (0,∞)→ N such that for all ε > 0,

lim
ε↓0

a(ε) = 0

and such that for every ε > 0, there is a partition {Q}m(ε)
i=1 of squares of diameters less than

a(ε).
These conclusions extend to any set Ω ⊆ [−R,R]d with Ωi = Qi ∩ Ω.

Definition 27.1. Let A ⊆ Rd, and let f : A→ R. We define the oscillation of f as

osc(f,A, δ) = sup
x,y∈A

{|f(x)− f(y)| : |x− y| ≤ δ}.

Remark 27.2. Assume A = Ω and f : Ω→ R is uniformly continuous. Then∫
Ω
f(x) dx =

m(ε)∑
i=1

∫
(f(x)− f(xi)) dx+ |Ωε

i |f(xεi ),

where xεi ∈ Ωε
i . As a consequence,∣∣∣∣∣∣

∫
Ω
f(x) dx−

m(ε)∑
i=1

|Ωε
i |f(xεi )

∣∣∣∣∣∣ ≤ i|Ω| osc(f,Ω, a(ε)).

Remark 27.3. If φ ∈ C∞c (Ω) and T ∈ D′(Ω), we set

φy(x) = φ(x− y), x ∈ y + supp(φ),

and y 7→ T (φy) is continuous on Oφ = {y ∈ Rd : y + supp(φ) ⊆ Ω}.
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27.2 Proof of the theorem

Now we can prove the theorem.

Proof. Let ψ ∈ L1(Oφ) be such that supp(ψ) ⊆ Oφ, We are to show that∫
Oφ

ψ(y)T (φy) dy = T (ψ ∗ ψ).

Case 1: ψ ∈ C∞c (Oφ). Since y 7→ f(y) := ψ(y)T (φ(y)) is uniformly continuous on Oφ,∣∣∣∣∣∣
∫
Oφ

ψ(y)T (φy) dy −
m(ε)∑
i=1

ψ(yεi )T (φyεi )|Ω
ε
i |

∣∣∣∣∣∣ ≤ osc(f,Oφ, a(ε))|Oφ|

for some yεi ∈ Ωε
i independent of T, φ, ψ. Set ηε(x) =

∑m(ε)
i=1 ψ(yεi )φ(x− yεi ). Let K1 be the

closure of the set
⋃
y∈Oφ(y + supp(φ)) ⊆ Ω. Then K1 is compact.

For any multi-index α ∈ Nd,

∂αηε(x) =

m(ε)∑
i=1

ψ(yεi )∂
αφ(x− yεi )|Ωε

i |.

This converges to
∫
Oφ
ψ(y)∂αφ(x− y) dy = ψ ∗ ∂α uniformly:∣∣∣∣∣

∫
Oφ

ψ(y)∂αφ(x− y) dy − ∂αηε(x)

∣∣∣∣∣ ≤ |Ω| osc(gxε ,Ω, a(ε))
ε→0−−−→ 0,

where gxε (y) = ψ(y)∂αφ(x − y). This means (ηε)ε converges to ψ ∗ φ in C∞c (Oφ). Conse-
quently,

T (φ ∗ ψ) = lim
ε→0

T (ηε) = lim
ε→0

m(ε)∑
i=1

|Ωε
i |T (ψyεi ) =

∫
Oφ

ψ(y)T (φy) dy.

Case 2: ψ ∈ L1(Øφ) and supp(ψ) ⊆ Oφ: For each δ > 0, let ψδ ∈ C∞c (Øφ) be such that∫
Oφ
|ψ−ψδ| dx ≤ δ, and assume there exists a compact K2 such that supp(ψδ) ⊆ K2 ⊆ Oφ.

Note that for a multi-index α ∈ Nd,

∂α(ψδ ∗ φ) = ∂αφ ∗ ψδ → ∂αφ ∗ ψ

uniformly on K2. Hence, ψδ ∗ φ→ ψ ∗ φ uniformly as δ → 0. We conclude that

T (ψ ∗ φ) = lim
δ→0

T (ψδ ∗ φ) = lim
δ→0

∫
Oφ

ψδ(y)T (φy) dy =

∫
Oφ

φ(y)T (φy),

using the dominated convergence theorem.
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Let φ ∈ C1(Ω, and assume that
∫

Ω |φ|
p dx+

∫
Ω |∇φ|

p dx <∞. Then∇φ as a distribution
is equal to the usual ∇φ.

A consequence of our result will be that for every y and a.e. x,

φ(x+ y)− φ(y) =

∫ 1

0
∇φ(x+ ty) · y dt.
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28 Distributions of Differences

28.1 Differences of functions in Sobolev spaces

Let Ω ⊆ Rd be an open set. If A ⊆ Rd, f : A → R¡ and y ∈ Rd¡ we set fy(x) = f(x − y)
for x ∈ A+ y. If φ ∈ C∞c (Ω), let Oφ = {y ∈ Rd : y + supp(φ) ⊆ Ω}.

Proposition 28.1. Let φ ∈ C∞c (Ω) and y ∈ Rd. Then K =
⋃
y∈[0,1](ty + supp(φ)) is

compact.

Proof. Set f(t, z) = ty + z. f : Rd+1 → Rd is continuous, and K = f([0, 1] × supp(φ)) is
compact as the image of a compact set by a continuous function.

Theorem 28.1. Let T ∈ D′(Ω), and let y ∈ Rd.

1. If φ ∈ C∞c (Ω) and ty + supp(φ) ⊆ Ω for all t ∈ [0, 1], then

T (φy) = T (φ) =

∫ 1

0

d∑
j=1

yj∂jT (φty) dt.

2. If f ∈W 1,1
loc (Rd), then for a.e. x ∈ Rd,

f(x+ y)− f(x) =

∫ 1

0
∇f(x+ ty) · y dt.

In the second case, if we could show that d
dtT (φty) = ∇T (φty)·y and that this derivative

is continuous, we could just use the fundamental theorem of calculus.

Proof. Set K =
⋃
t∈[0,1](ty + supp(φ)). Then K ⊆ Ω is compact. For x ∈ Rd and h 6= 0,

Lh(x) :=
φ(x− (t+ h)y)− φ(x− ty)

h
= −

∫ 1

0
∇φ(x− ty − τhy) · y dτ.

Note that Lh ∈ C∞c (Ω) if 0 < |h| � 1, and

lim
h→0

Hh(x) = ∇φ(x− ty) · y =: L0(x).

Also, (Lh)h converges to L0 in C∞c (Ω). Thus,

d

dt
T (φty) = lim

h→0
T (Lh) = T (L0) = T (−∇φ(x− ty) · y)

= −
d∑
j=1

yjT (∂jφ(· − ty)) =
d∑
j=1

yj∂jT (φ(· − ty))
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=
d∑
j=1

yj∂jT (φty).

As t→ ∂jT (φt,y) is continuous, we conclude that t→ d
dtT (φty) is continuous. So we get

T (φy)− T (φ) =

∫ 1

0

d

dt
(T (φty)) dt =

∫ 1

0
∇T (φty) · y dt.

For the second statement, let f ∈W 1,1
loc , and set

T (φ) =

∫
Rd
φ(x)f(x) dx.

Then T ∈ D′(Ω), and ∂jT (φ) = −T (∂jφ) = −
∫
Rd ∂jφf . So

∂jT (φ) =

∫
Rd
φ(x)∂jf(x) dx.

By the first statement,∫
Rd

(φy(x)− φ(x))f(x) dx =

∫ 1

0

∫
Rd

d∑
j=1

yjφty(x)∂jf(x) dx dt.

The left hand side is ∫
Rd

(φ(x− y)− φ(x))f(x) dx,

and the left hand side is ∫ 1

0

∫
Rd

d∑
j=1

yjφ(x− ty)∂jf(x) dx dt.

If we make the change of variables z = z − y, then∫
Rd
φ(z)(f(z + y)− f(z)) dz =

∫ 1

0

∫
Rd

d∑
j=1

yjφ(z)∂jf(z + ty) dz dt.

Since φ is of compact support and ∂jf ∈ L1
loc we check that we can apply Fubini’s theorem

to conclude that∫
Rd
φ(z)(f(z + y)− f(z)) dz =

∫
Rd
φ(z)

(∫ 1

0
∇f(z + ty) · y dt

)
dz.

By H older’s inequality, this implies that z 7→
∫ 1

0 ∇f(z + ty) · y dt ∈ L1
loc(Rd), and

f(z + y)− f(z) =

∫ 1

0
∇f(z + ty) · y dt

for a.e. z ∈ Rd.
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Remark 28.1. Let f ∈ C1(Ω), and set

T (φ) =

∫
Ω
f(x)φ(x) dx), φ ∈ C∞c (Ω).

Then T ∈ D′(Ω), and

∂jT (φ) =

∫
Ω

∂f

∂xj
(x)φ(x) dx,

where ∂f
∂xj

is the pointwise derivative.

This has a converse.

Theorem 28.2. Let g1, . . . , gd ∈ C(Ω), and let T ∈ D′(Ω) be such that ∂jT = gj for
j = 1, . . . , d. Then there exists f ∈ C1(Ω) such that

T (φ) =

∫
Ω
f(x)φ(x) dx, φ ∈ C∞c (Ω).

Then

gj =
∂f

∂xj
.

Corollary 28.1. If Ω is connected, T ∈ D′(Ω), and ∂j = 0 for j = 1, . . . , d, then there
exists C ∈ R such that

T (φ) = C

∫
Ω
φ(x) dx, ∀φ ∈ C∞c (Ω).
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29 Convolution of Distributions and Approximation of W 1,p
loc

Functions by C∞ Functions

29.1 Convolution of distributions

If you solve |Du| = 1 with some boundary condition, it is unlikely that wou will find a
solution in C1(Ω). You will probably find a solution in W 1,1

loc (Ω). But we can approximate

functions in C1(Ω) by functions in W 1,1
loc (Ω). We can also approximate by functions in

C∞(Ω). Oftentimes, we want to show that we have a solution in some bigger space and
see if we can show it has extra properties that force it to be in a smaller, nicer space.

Let Ω ⊆ Rd be an open set. If φ ∈ C∞c (Ω), we define Oφ = {y ∈ Rd : y+ supp(φ) ⊆ Ω}.
If ψ ∈ L1(Oφ) is bounded, then

T (ψ ∗ φ) =

∫
Oφ

ψ(y)T (φy) dy.

for T ∈ D′(Ω and φy(x) = φ(x− y).
Given j : A ⊆ Rd → R, we define h̃L − A → R as j̃ = j(−x). If T ∈ D′(Rd) and

j ∈ C∞c (Rd), we define j ∗ T : C∞c (Rd)→ R as

j ∗ T (φ) = T (j̃ ∗ φ).

Theorem 29.1. Let T ∈ D′(Rd), and let j ∈ C∞c (Rd).
1. There exists ψ ∈ C∞(Rd) such that

j ∗ T (φ) =

∫
Rd
φ(y)ψ(y) dy, ∀φ ∈ C∞c (Rd)

and so j ∗ T ∈ D′(Rd).

2. Further assume
∫
Rd j(x) dx = 1, and set jε = ε−dj(x/ε) for x ∈ Rd. Then (jε ∗ T )ε

converges to T in D′(Rd) as ε ↓ 0.

Remark 29.1. This shows that we have an embedding from C∞(Ω) into D′(Ω) and that
this class of functions is dense in D′(Ω).

Proof. Note that Oj̃ = {y ∈ Rd : y+ supp(j̃) ∈ Rd} = Rd. By the formula for distributions
applied to convolutions, we get

j ∗ T (φ) = T (j̃ ∗ φ) =

∫
Oj̃

ψ(y)T (j̃y) dy.

Since j̃ ∈ C∞c (Rd), y 7→ T (j̃y) is of class C∞.
For the second statement, if φ ∈ C∞c (Rd),

lim
ε→0

jε ∗ T (φ) = lim
ε→0

T (j̃ε ∗ φ) = T (φ)

since j̃ε ∗ φ converges to φ in C∞c (Rd).
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29.2 Approximation of W 1,p
loc functions by C∞ functions

Theorem 29.2. Let 1 ≤ p < ∞, and let f ∈ W 1,p
loc (Ω). Then for every open, bounded

O ⊆ Rd such that O ⊆ Ω, there exists (fk)k ⊆ C∞(O) such that

lim
k→∞

‖f − fk‖W 1,p(O) = 0.

Remark 29.2. This is equivalent to saying that fk ∈ C∞0 (O) ∩W 1,p
loc (O).

Proof. Let δ = dist(O,Ωc) > 0. Let j = C∞c (Rd) be such that
∫
Rd j(x) dx = 1 and

supp(j) = B1(0). Set jε(x) = ε−dj(x/ε) for 0 < ε < δ/3. Note that jε ∗ f , jε ∗ ∇f are
well-defined on O for these ε. We have jε ∗ f ∈ C∞(O) and that

0 = lim
ε→0
‖jε ∗ f − f‖Lp(O) = lim

ε→0
‖jε ∗ ∇f −∇f‖Lp(O).

Set fk = j1/k ∗ f to conclude the proof.
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